Paper 44 Entered: October 15, 2020

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

MICROSOFT CORPORATION, Petitioner,

v.

IPA TECHNOLOGIES INC., Patent Owner.

Case IPR2019-00810 Patent 6,851,115 B1

Before LYNNE E. PETTIGREW, MINN CHUNG, and KEVIN C. TROCK, *Administrative Patent Judges*.

CHUNG, Administrative Patent Judge.

JUDGMENT
Final Written Decision
Determining Some Challenged Claims Unpatentable
35 U.S.C. § 318(a)

I. INTRODUCTION

In this *inter partes* review, instituted pursuant to 35 U.S.C. § 314, Microsoft Corporation ("Petitioner") challenges the patentability of claims 1, 4–10, 15, 16, 29–32, 38, and 39 (the "challenged claims") of U.S. Patent No. 6,851,115 B1 (Ex. 1001, "the '115 patent"), owned by IPA Technologies Inc. ("Patent Owner"). This Final Written Decision is entered pursuant to 35 U.S.C. § 318(a) and 37 C.F.R. § 42.73. For the reasons discussed below, we determine Petitioner has shown by a preponderance of the evidence that claims 1, 4–7, 15, and 16 of the '115 patent are unpatentable, but has not proven by a preponderance of the evidence that claims 8–10, 29–32, 38, and 39 of the '115 patent are unpatentable.

II. BACKGROUND

A. Procedural History

On March 19, 2019, Petitioner filed a Petition (Paper 1, "Pet.") requesting an *inter partes* review of the challenged claims of the '115 patent. Patent Owner filed a Preliminary Response (Paper 6, "Prelim. Resp.").

On October 16, 2019, applying the standard set forth in 35 U.S.C. § 314(a), which requires demonstration of a reasonable likelihood that Petitioner would prevail with respect to at least one challenged claim, we instituted an *inter partes* review of the challenged claims. Paper 12 ("Inst. Dec."). In the Institution Decision, we determined Petitioner demonstrated a reasonable likelihood that it would prevail as to at least one challenged claim, and we instituted trial on all claims and all grounds in the Petition. Inst. Dec. 83–84.

After institution, pursuant to our order consolidating briefing (Paper 19), the parties filed consolidated papers in in IPR2019-00810, IPR2019-00811, IPR2019-00812, IPR2019-00813, and IPR2019-00814. Patent Owner filed a Patent Owner Response (Paper 22, "PO Resp."), Petitioner filed a Reply to Patent Owner Response (Paper 30, "Pet. Reply"), and Patent Owner filed a Corrected Sur-reply (Paper 40, "PO Sur-reply"). In addition, in IPR2019-00810, Patent Owner moved to exclude (Paper 35) a portion of Exhibit 1129, as well as related testimony relied on by Petitioner; Petitioner opposed (Paper 36); and Patent Owner replied (Paper 38).

A consolidated oral hearing in IPR2019-00810, IPR2019-00811, IPR2019-00812, IPR2019-00813, IPR2019-00814, IPR2019-00835, IPR2019-00836, and IPR2019-00837 was held on July 27, 2020 and July 28, 2020, and a copy of the hearing transcript has been entered into the record. Paper 43 ("Tr.").

B. Related Matters

According to the parties, the '115 patent is the subject of the following district court litigation: *IPA Techs. Inc. v. Google LLC*, No. 1:18-cv-00318 (D. Del.); *IPA Techs. Inc. v. Microsoft Corp.*, No. 1:18-cv-00001 (D. Del.); and *IPA Techs. Inc. v. Amazon.com, Inc.*, No. 1:16-cv-01266 (D. Del.). Pet. 2–3; Paper 3, 2. The '115 patent is also the subject of co-pending petitions for *inter partes* review filed by Petitioner in Cases IPR2019-00811, IPR2019-00812, IPR2019-00813, and IPR2019-00814. Paper 3, 2.

C. The '115 Patent

The '115 patent describes "software-based architectures for communication and cooperation among distributed electronic agents." Ex. 1001, 1:27–29. Figure 4 of the '115 patent is reproduced below.

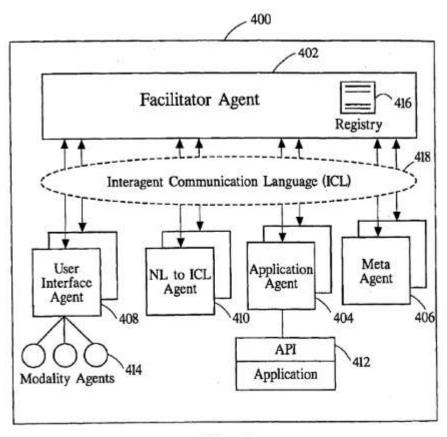


Fig. 4

Figure 4 depicts the structure of an exemplary distributed agent system of the '115 patent. *Id.* at 6:25–32. As shown in Figure 4, system 400 includes facilitator agent 402, user interface agents 408, application agents 404, and meta-agents 406. *Id.* at 6:25–28. The '115 patent describes that system 400 is organized "as a community of peers by their common relationship" to facilitator agent 402 (*id.* at 6:28–30), which is "a specialized server agent

that is responsible for coordinating agent communications and cooperative problem-solving" (*id.* at 6:32–35).

According to the '115 patent, cooperation among agents is structured around a three-part approach as follows: (1) providers of services register their capabilities specifications with a facilitator; (2) requesters of services construct goals and relay them to the facilitator; and (3) the facilitator coordinates the efforts of the appropriate service providers in satisfying these goals. *Id.* at 10:42–47. The '115 patent describes that cooperation among agents is achieved via messages expressed in a common language, called the Interagent Communication Language ("ICL"). *Id.* at 10:40–48.

Referencing Figure 3 (not reproduced herein) and Figure 4, the '115 patent describes the operation of a distributed agent system in a preferred embodiment. *Id.* at 7:13–39. The '115 patent describes that, when invoked, a client agent makes a connection to a facilitator, e.g., facilitator agent 402, and registers with the facilitator a specification of the capabilities and services it can provide. *Id.* at 7:15–21. For example, a natural language agent may register the characteristics of its available natural language vocabulary. *Id.* at 7:21–23. When facilitator agent 402 receives a service request and determines that registered services 416 of one of its client agents will help satisfy a goal of the request, the facilitator sends that client a request expressed in ICL 418. *Id.* at 7:25–29. The client agent parses this request, processes it, and returns answers or status reports to the facilitator. *Id.* at 7:30–32.

Referencing Figures 5 and 6 (not reproduced herein), the '115 patent describes an exemplary embodiment where user interface agent 408 runs on

a user's laptop, accepting user input, sending requests to facilitator agent 402 for delegation to appropriate agents, and displaying the results of the distributed computation. *Id.* at 7:53–63. As illustration, the '115 patent describes that, when the question "What is my schedule?" is entered on user interface (UI) 408, UI 408 sends the request to facilitator agent 402, which in turn asks natural language (NL) agent 426 to translate the query into ICL. *Id.* at 8:4–8. The translated ICL expression is then routed by facilitator agent 402 to appropriate agents, e.g., calendar agent 434, to execute the request. *Id.* at 8:13–15. Finally, results are sent back to UI agent 408 for display. *Id.* at 8:15–16.

D. Illustrative Claim

Of the challenged claims, claims 1 and 29 are independent. Claim 1 is illustrative of the challenged claims and is reproduced below.

- 1. A computer-implemented method for communication and cooperative task completion among a plurality of distributed electronic agents, comprising the acts of:
- registering a description of each active client agent's functional capabilities as corresponding registered functional capabilities, using an expandable, platform-independent, inter-agent language, wherein the inter-agent language includes:
 - a layer of conversational protocol defined by event types and parameter lists associated with one or more of the events, wherein the parameter lists further refine the one or more events;
 - a content layer comprising one or more of goals, triggers and data elements associated with the events:
- receiving a request for service as a base goal in the inter-agent language, in the form of an arbitrarily complex goal expression; and

- dynamically interpreting the arbitrarily complex goal expression, said act of interpreting further comprising:
- generating one or more sub-goals expressed in the inter-agent language;
- constructing a goal satisfaction plan wherein the goal satisfaction plan includes:
- a suitable delegation of sub-goal requests to best complete the requested service request—by using reasoning that includes one or more of domain-independent coordination strategies, domain-specific reasoning, and application-specific reasoning comprising rules and learning algorithms; and
- dispatching each of the sub-goals to a selected client agent for performance, based on a match between the sub-goal being dispatched and the registered functional capabilities of the selected client agent.

Ex. 1001, 29:10-44.

E. Applied References and Declarations

Petitioner relies upon the following references in its challenges to patentability.

Reference and Relevant Date(s)	Designation	Exhibit No.
U.S. Patent No. 6,484,155 B1 (filed July 21, 1999; provisional filed July 21, 1998)	Kiss ¹	Ex. 1005

¹ For clarity and ease of reference, we only list the first named inventor.

Reference and Relevant Date(s)	Designation	Exhibit No.
FIPA 97 Version 1.0 Specification (Oct. 10, 1997) ²	FIPA97	Exs. 1006– 1012 ³
Adam Cheyer, MVIEWS: Multimodal Tools for the Video Analyst, PROCEEDINGS OF 1998 INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES 55 (1998) ⁴	Cheyer	Ex. 1015

Petitioner also cites the Declaration of Dr. Henry Lieberman, HDR (Ex. 1003, "Lieberman Declaration" or "Lieberman Decl.") in support of its unpatentability contentions. In addition, Petitioner relies on the Declaration of Dr. Timothy Finin, Ph.D. (Ex. 1049, "Finin Declaration" or "Finin

² Petitioner asserts that FIPA97 was accessible to the public by October 1997 and submits various evidence in support of its contention. *See* Pet. 23–25. Patent Owner contends that Petitioner has not shown sufficiently that FIPA97 was accessible to the public before the priority date of the '115 patent. PO Resp. 45–65. As discussed below in Section III.D., we determine that Petitioner has shown by a preponderance of the evidence that FIPA97 was accessible to the public by October 1997.

³ Petitioner asserts that FIPA97 was made publicly available as a single document. Pet. 23 (citing Ex. 1055). Petitioner explains that, due to its size, the reference was broken up into 7 parts and filed as Exhibits 1006 through 1012. *Id.* Patent Owner does not dispute that FIPA97 is one reference for purposes of §§ 102 and 103. *See* PO Resp. 117–120. As discussed below in Section III.C.2., we agree with Petitioner that FIPA97 constitutes a single prior art reference, and we treat it as such for purposes of our unpatentability analysis.

⁴ Petitioner contends that Cheyer was published in 1998. Pet. 27. Patent Owner does not dispute the publication date of Cheyer. *See* PO Resp. 44–45. For the reasons explained below, we determine that Petitioner has shown sufficiently that Cheyer was accessible to the public in 1998.

Decl."). Patent Owner relies on the Declaration of Nenad Medvidovic, Ph.D. (Ex. 2032, "Medvidovic Declaration" or "Medvidovic Decl.") and the Declaration of Philip R. Cohen, Ph.D. (Ex. 2033, "Cohen Declaration" or "Cohen Decl.") in support of its Patent Owner Response.

F. Instituted Grounds of Unpatentability

Petitioner asserts the following grounds of unpatentability:

Claims Challenged	35 U.S.C. §	Basis
1, 4–10, 15, 29–32, 38	§ 103(a) ⁵	Kiss and FIPA97
7, 16, 39	§ 103(a)	Kiss, FIPA97, and Cheyer

Pet. 3–4. We instituted an *inter partes* review on all challenged claims and all grounds set forth in the Petition. Inst. Dec. 83–84.

III. ANALYSIS

A. Level of Ordinary Skill in the Art

We begin our analysis by addressing the level of ordinary skill in the art. Petitioner's declarant, Dr. Lieberman, opines that a person of ordinary skill in the art at the time of the invention of the '115 patent would have been someone familiar with the principles and conventions of computer science and computer networking, and also with multi-agent systems and inter-agent communication languages as documented in agent-centered

⁵ The Leahy-Smith America Invents Act, Pub. L. No. 112-29, 125 Stat. 284 (2011) ("AIA"), amended 35 U.S.C. §§ 102 and 103. Because the '115 patent has an effective filing date prior to the effective date of the applicable AIA amendments, we refer to the pre-AIA versions of §§ 102 and 103.

literature by 1999. Ex. 1003 ¶ 34; *see* Pet. 4–5 (citing Ex. 1003 ¶ 34). Dr. Lieberman also testifies that a person of ordinary skill in the art may have been a graduate student in mathematics, engineering, or computer science, and may have had an advanced degree in one of these disciplines, and would also have had at least two years of experience working in the field of computer science, or a related field, and may have worked in academia, either as a professor or a graduate student, for a technology company, or for a government. *Id*.

Citing the testimony of its declarant, Dr. Medvidovic, Patent Owner asserts that a person of ordinary skill in the art at the time of the '115 patent's filing date would have had "a Bachelor's degree in Computer Science or equivalent field and at least two years of work experience in design and development of distributed systems, software specification languages, or a related area." PO Resp. 23 (citing Ex. 2032 ¶ 37). Patent Owner criticizes Petitioner's articulation of the level of ordinary skill in the art as being "vague and uncertain" due to Petitioner's and Dr. Lieberman's use of the word "may" in their proposed definition. *Id.* at 23–24. Patent Owner contends that Petitioner's proposed definition "leav[es] every aspect of the level of skill 'fluid," which is "particularly problematic here, where Petitioner claims that it would have been obvious to create an agent system that is very complex and advanced in its facilitation, goal processing, and inter-agent communication capacities." *Id.* at 24 (citing Ex. 2032 ¶ 40).

Petitioner responds that its proposal "simply (and realistically) expresses alternatives—*i.e.*, that a Skilled Artisan would have been at least a graduate student in several relevant fields (*e.g.*, 'mathematics, engineering, or

computer science'), and would have had at least two years of work experience in those fields." Pet. Reply 13–14 (citing Pet. 4–5). Petitioner also argues that Patent Owner does not articulate how any differences between the parties' proposals that would alter or even affect the outcome of this proceeding. *Id.* at 14.

Patent Owner asserts that it has "identified how the difference between the proposals would affect this proceeding" because Patent Owner has pointed out that "it is Petitioner's burden under the law to address each Graham factor and Petitioner has failed to proffer a coherent level of ordinary skill in the art, Petitioner's obviousness assertion fails for that reason alone." PO Sur-reply 15 (citing PO Resp. 24).

But Patent Owner does not identify any "meaningful differences" between the parties' proposed definitions or how "the outcome of [this proceeding] would have been different" if we adopted Patent Owner's proposed definition, as opposed Petitioner's proposal. *See ESIP Series 2, LLC v. Puzhen Life USA, LLC*, 958 F.3d 1378, 1385 (Fed. Cir. 2020) (citing *Genzyme Therapeutic Prod. Ltd. P'ship v. Biomarin Pharm. Inc.*, 825 F.3d 1360, 1371–72 (Fed. Cir. 2016)). For example, Patent Owner does not argue the challenged claims are not unpatentable under Patent Owner's proposed definition of the level of ordinary skill in the art, nor does it identify any claim limitation that would have been taught by the asserted prior art under Petitioner's proposed definition, but *not* under Patent Owner's proposal. *See* PO Resp. 23–24; PO Sur-reply 14–16.

In our view, the parties' proposals are not materially different despite the differences in wording between them (e.g., the education level of a Bachelor's degree in Computer Science or equivalent field under Patent Owner's proposal, as opposed to a graduate student's level of education with or without a Bachelor's degree under Petitioner's proposed definition). *See* Pet. 4–5; Pet. Reply 13–14; PO Resp. 23. For purposes of this Final Written Decision, we find no meaningful differences between the parties' respective definitions that would materially alter the outcome of this Decision. These proposals are similar for all purposes relevant to this Final Written Decision, and both are consistent with the level of ordinary skill in the art reflected in the disclosure of the '115 patent and the prior art of record. *See Okajima v. Bourdeau*, 261 F.3d 1350, 1355 (Fed. Cir. 2001); *In re GPAC Inc.*, 57 F.3d 1573, 1579 (Fed. Cir. 1995).

Nonetheless, for this Final Written Decision, we adopt Patent Owner's definition of a person of ordinary skill in the art at the time of the claimed invention. That is, a person of ordinary skill in the art at the time of the claimed invention would have had "a Bachelor's degree in Computer Science or equivalent field and at least two years of work experience in design and development of distributed systems, software specification languages, or a related area." Our analysis and conclusions in this Final Written Decision would be the same regardless of whether Petitioner's or Patent Owner's definition of the level of ordinary skill in the art is adopted.

B. Claim Construction

In an *inter partes* review, we apply the same claim construction standard that would be used in a civil action under 35 U.S.C. § 282(b), following the standard articulated in *Phillips v. AWH Corp.*, 415 F.3d 1303 (Fed. Cir. 2005) (en banc). 37 C.F.R. § 42.100(b) (2019). In applying such

standard, claim terms are generally given their ordinary and customary meaning, as would be understood by a person of ordinary skill in the art, at the time of the invention and in the context of the entire patent disclosure. *Phillips*, 415 F.3d at 1312–13. "In determining the meaning of the disputed claim limitation, we look principally to the intrinsic evidence of record, examining the claim language itself, the written description, and the prosecution history, if in evidence." *DePuy Spine, Inc. v. Medtronic Sofamor Danek, Inc.*, 469 F.3d 1005, 1014 (Fed. Cir. 2006) (citing *Phillips*, 415 F.3d at 1312–17).

In our Decision on Institution, we preliminarily interpreted five claim terms as follows.

Term	Construction
"event"	"a message or goal communicated between agents"
"event type"	"a type of an event"
"goal"	"a request for service"
"arbitrarily complex goal expression"	"a goal expressed in a language or syntax that allows an expression, when appropriate or when desired, that expresses multiple sub-goals and can potentially include more than one type of logical connector (e.g., AND, OR, NOT), and/or more than one level of logical nesting (e.g., use of parentheses), or the substantive equivalent, although not every goal is itself necessarily complex"
"compound goal"	"a single goal expression that specifies multiple sub-goals to be performed"

Dec. on Inst. 29–38.

The parties do not dispute the constructions of these five terms in their Patent Owner Response or Petitioner Reply. *See* PO Resp. 25–27; Pet. Reply 1. Upon considering the complete record, we discern no reason to deviate from our preliminary constructions and, therefore, adopt the constructions of the claim terms "event," "event type," "goal," "arbitrarily complex goal expression," and "compound goal" as set forth above for this Final Written Decision.

In the Petition, Petitioner discusses constructions for six additional claim terms, including "goal satisfaction plan," "layer of conversational protocol," "content layer," "trigger," "symbolic name," and "parameter lists further refine the one or more events." Pet. 8–16. In addition, in the Petitioner Reply, Petitioner discusses construction of the claim term "process characteristics." Pet. Reply 12–13. Patent Owner disputes constructions for two terms, "goal satisfaction plan" and "process characteristics." *See* PO Resp. 24–38; PO Sur-reply 13–14. We discuss constructions for each of the two disputed terms in turn below.

Patent Owner does not discuss Petitioner's proposed construction for the claim term "parameter lists further refine the one or more events" or propose its own construction for the term. *See* PO Resp. 24–38.

Nonetheless, Patent Owner discusses meaning of this term in the context of Patent Owner's arguments that FIAP97 does not teach an "expandable . . . inter-agent language" and "parameter lists" that "further refine the one or more events," as recited in claim 1. *See id.* at 97–106. Although Patent Owner's arguments raise an issue of claim construction, Patent Owner's arguments are closely related to and interspersed with Patent Owner's

arguments that FIPA97 does not teach an "inter-agent language" recited in claim 1. Thus, for efficiency and completeness, we address this issue in the context of the patentability discussion below.

No other claim terms, beyond those terms noted above, need to be construed expressly for purposes of this Final Written Decision. *See Vivid Techs., Inc. v. Am. Sci. & Eng'g, Inc.*, 200 F.3d 795, 803 (Fed. Cir. 1999) (holding that only terms that are in controversy need to be construed, and "only to the extent necessary to resolve the controversy"); *see also Nidec Motor Corp. v. Zhongshan Broad Ocean Motor Co.*, 868 F.3d 1013, 1017 (Fed. Cir. 2017) (applying *Vivid Techs.* in the context of an *inter partes* review).

1. "goal satisfaction plan"

The claim term "goal satisfaction plan" is recited in all but one of independent claims of the '115 patent—claims 1, 29, 61, 71, and 86, the one exception being claim 48. See Ex. 1001, 29:33–40 (claim 1), 32:9–21 (claim 29), 35:24–29 (claim 61), 36:17–23 (claim 71), 37:22–38:5 (claim 86). "[W]e presume, unless otherwise compelled, that the same claim term in the same patent or related patents carries the same construed meaning." Paice LLC v. Ford Motor Co., 881 F.3d 894, 904 (Fed. Cir. 2018) (quoting Omega Eng'g, Inc. v. Raytek Corp., 334 F.3d 1314, 1334 (Fed. Cir. 2003). The parties do not contend that the term "goal satisfaction plan" has different meanings in different claims of the '115 patent. See Pet. 10; PO Resp. 27–38; Pet. Reply 1–12; PO Sur-reply 2–13.

Petitioner contends that a "goal satisfaction plan" is a "procedure for sending one or more requests for service to one or more agents in order to satisfy a goal." Pet. 10. Patent Owner disagrees and asserts that the claim term "goal satisfaction plan" should be construed to mean "a plan for the satisfaction of a complex goal expression in an optimal or near-optimal manner that is consistent with any advice parameters or constraints." PO Resp. 28.

a. Claim Language

We begin our claim construction analysis by considering the language of the claims themselves. *Phillips*, 415 F.3d at 1314. Addressing the claim language of the disputed term, we note that the claim language "a goal satisfaction plan" indicates that the term's plain meaning is "a plan for satisfying a goal."

In the challenged independent claims 1 and 29, the term "goal satisfaction plan" is further limited (in different ways) by specific limitations recited in the claims. For example, claim 1 recites:

- constructing a goal satisfaction plan wherein *the goal* satisfaction plan includes:
- a suitable delegation of sub-goal requests to *best complete* the requested service request—by using reasoning that includes one or more of domain-independent coordination strategies, domain-specific reasoning, and application-specific reasoning comprising rules and learning algorithms;
- Ex. 1001, 23:33–40 (emphases added). In contrast, claim 29 recites:
 - constructing a base *goal satisfaction plan including the sub-acts* of:
 - determining whether the request service is available,
 - determining sub-goals required in completing the base goal by using reasoning that includes one or more of domainindependent coordination strategies, domain-specific

reasoning, and application-specific reasoning comprising rules and learning algorithms,

selecting service-providing electronic agents from the agent registry suitable for performing the determined sub-goals, and

ordering a delegation of sub-goal requests complete the requested service;

Id. at 32:9–21 (emphasis added).

As shown above, the "optimal or near-optimal" limiting feature argued by Patent Owner is recited in claim 1 ("a suitable delegation of sub-goal requests to *best complete* the requested service request"), but not in claim 29. This shows that the patentee knew how to restrict the "goal satisfaction plan" to "best complete the requested service request," i.e., satisfy a goal "in an optimal or near-optimal manner." If the patentee had intended to similarly restrict the "goal satisfaction plan" in claim 29, it could have done so using the language of claim 1, but did not. *See Intellectual Ventures I LLC v. T-Mobile USA, Inc.*, 902 F.3d 1372, 1379 (Fed. Cir. 2018) (citing *Unwired Planet, LLC v. Apple Inc.*, 829 F.3d 1353, 1359 (Fed. Cir. 2016)).

Thus, Patent Owner's proposed construction that generally requires a "goal satisfaction plan" to satisfy a goal "in an optimal or near-optimal

⁶ Patent Owner asserts that the term "optimal" and "near optimal" has a well-established meaning in the context of computer engineering, citing a technical dictionary, which defines optimization as "[t]he process of finding *the best solution* to some problem, where 'best' accords to prestated criteria." PO Sur-reply 6 (emphasis added) (citing Ex. 2078, 3).

manner" would have the effect of obfuscating the material differences in the claim language of claim 1 and claim 29 discussed above.

In addition, for claim 1, Patent Owner's proposed construction would render the limitation "suitable delegation of sub-goal requests to best complete the requested service request" recited in claim 1 superfluous. Such a construction is presumed improper. See Digital-Vending Servs. Int'l, LLC v. Univ. of Phoenix, Inc., 672 F.3d 1270, 1274–75 (Fed. Cir. 2012) (rejecting the district court's construction narrowing a term by a superfluous limitation when the claims explicitly recited the narrowing limitation, and discussing the "well-established rule that claims are interpreted with an eye toward giving effect to all terms in the claim") (quoting *Bicon*, *Inc. v. Straumann* Co., 441 F.3d 945, 950 (Fed. Cir. 2006)) (internal quotation marks omitted); LSI Indus., Inc. v. ImagePoint, Inc., 279 F. App'x 964, 972 (Fed. Cir. 2008) (nonprecedential) (rejecting the district court's construction of "display device" as necessarily including the superfluous limitation of "internal illumination" because other claim terms specifically recited an "illuminated display device"); but cf. ERBE Elektromedizin GmbH v. Canady Tech. LLC, 629 F.3d 1278, 1286 (Fed. Cir. 2010) ("no canon of [claim] construction is absolute in its application") (citation omitted).

Considering next the Patent Owner-argued limiting feature of satisfying a goal "consistent with any advice parameters or constraints," this feature is recited in claim 29, but not in claim 1. Claim 29 recites "the act of interpreting including the sub-acts of: determining any task completion *advice* provided by the base goal, and determining any task completion *constraints* provided by the base goal" (Ex. 1001, 32:4–8 (emphases

added)), whereas claim 1 does not recite "advice" or "constraint" (*see id.* at 29:10–44). Thus, Patent Owner's proposed construction is disfavored because it would blur the material differences in the claim language of claim 1 and claim 29 discussed above.

Finally, Patent Owner's proposed construction replaces "goal" with "complex goal expression." Again, this feature is recited in claim 1, but not in claim 29. Claim 1 recites "receiving a request for service as a base goal in the inter-agent language, in the form of an arbitrarily complex goal expression; and dynamically interpreting the arbitrarily complex goal expression" (Ex. 1001, 29:25–30), whereas claim 29 recites "interpreting a service request in order to determine a base goal that *may be* a compound, arbitrarily complex base goal" (*id.* at 31:59–61) (emphasis added). Because of the permissive language "may be" used in claim 29, a "goal" is not necessarily required to be in the form of an arbitrarily complex goal expression in claim 29. Again, Patent Owner's proposed construction is disfavored because it would blur the material differences in the claim language of claim 1 and claim 29 discussed above.

Thus, at least based on the claim language, it is not appropriate to limit "goal satisfaction plan" as Patent Owner contends. As discussed above, the meaning and the scope of "goal satisfaction plan" is clear on the face of each claim because claims 1 and 29 each recite specifically what a "goal satisfaction plan" includes or comprises in different claims.

Therefore, absent compelling evidence to the contrary, it is neither necessary nor appropriate to limit the meaning of the term "goal satisfaction plan"

beyond the plain meaning indicated by the claim language—i.e., "a plan for satisfying a goal."

b. Written Description

Turning to the Specification, Patent Owner cites the following statement in the "Summary of the Invention" section:

[e]xtreme flexibility is achieved through an architecture organized around the declaration of capabilities by service-providing agents, the construction of arbitrarily complex goals by users and service-requesting agents, and the role of facilitators in delegating and coordinating the satisfaction of these goals, subject to advice and constraints that may accompany them.

PO Resp. 31 (quoting Ex. 1001, 5:3–9). The very first sentence of the paragraph cited by Patent Owner states, however, "[a] first *embodiment* of the present invention discloses a highly flexible, Software-based architecture for constructing distributed systems." Ex. 1001, 4:58–60 (emphasis added). Indeed, all of the portions of the Specification cited by Patent Owner, including the passage reproduced above, describe various embodiments of the '115 patent. *See* PO Resp. 30–33 (citing Ex. 1001, 5:3–9, 5:48–49, 15:37–39, 15:66–16:1, 16:11–21, 16:38–46, 18:35–48, 28:47–54, Fig. 11).

In general, "a particular embodiment appearing in the written description may not be read into a claim when the claim language is broader than the embodiment." *SuperGuide Corp. v. DirecTV Enters., Inc.*, 358 F.3d 870, 875 (Fed. Cir. 2004) (citation omitted). As discussed above, the challenged independent claims 1 and 29 do not recite all of the limiting features required by Patent Owner's proposed construction of "goal satisfaction plan." Thus, unless one of the established exceptions, such as

lexicography or disavowal, applies, the challenged claims are not restricted as Patent Owner contends. See, e.g., GE Lighting Sols., LLC v. AgiLight, Inc., 750 F.3d 1304, 1309 (Fed. Cir. 2014) ("the specification and prosecution history only compel departure from the plain meaning in two instances: lexicography and disavowal") (citation omitted). Here, Patent Owner does not argue lexicography or disavowal. Nor does Patent Owner explain any other reason why the Specification limits "goal satisfaction plan" as it contends. Thus, claim construction in this case is governed by the general principle that "a particular embodiment appearing in the written description may not be read into a claim when the claim language is broader than the embodiment." SuperGuide, 358 F.3d at 875; see also WesternGeco LLC v. ION Geophysical Corp., 889 F.3d 1308, 1323–24 (Fed. Cir. 2018) ("It is well established that claims are not limited to preferred embodiments, unless the specification clearly indicates otherwise." (citing *Comaper Corp.* v. Antec, Inc., 596 F.3d 1343, 1348 (Fed. Cir. 2010) ("[T]his court has repeatedly cautioned against limiting claims to a preferred embodiment."))). Accordingly, none of the embodiments in the Specification cited by Patent Owner limits "goal satisfaction plan" as Patent Owner contends.

c. Prosecution History

Turning next to the prosecution history, Patent Owner asserts that "examples in the file history confirm the elements of 'goal satisfaction plan' reflected in Patent Owner's proposed construction." PO Resp. 35–36. Patent Owner argues, during the prosecution of the application for the '115 patent,

Applicant further stated that "the facilitating engine is able to use reasoning to delegate the sub-goals to service providing agents in such a way as 'to best complete the requested service request.'...The facilitating engine is able to use reasoning to delegate the sub-goal task of roasting coffee to the service-providing agent that can roast beans in the least amount of time because the facilitating engine has reasoned that the least amount of time taken to make coffee is the best way to accomplish the base goal of making coffee." Applicant concluded that "the base goal is carried out not by merely parsing the request into sub-goals" but rather "the facilitating engine used reasoning to decide upon using competing message transfer agents to reminding Bob of lunch, in lieu of delegating the task to just one message transfer agent."

Id. at 35 (citing Ex. 1002, 172–173). As discussed above, however, the limiting feature argued by Patent Owner is recited in claim 1 ("a suitable delegation of sub-goal requests to *best complete* the requested service request"), but not in claim 29. Thus, Patent Owner's argument is unpersuasive for the same reasons discussed above.

d. Extrinsic Evidence

Patent Owner also cites the testimony of its declarant,
Dr. Medvidovic, in support of Patent Owner's proposed construction of
"goal satisfaction plan." PO Resp. 36–37 (citing Ex. 2032 ¶¶ 51–52, 54–59,
129). We have reviewed the cited testimony from Dr. Medvidovic, but do
not find anything in his testimony that would change our analysis based on
intrinsic record discussed above. *See Phillips*, 415 F.3d at 1318 (authorizing
the consideration of extrinsic evidence in determining the meaning of claims
but noting that it is "in general . . . less reliable than the patent and its
prosecution history in determining how to read claim terms").

e. Other Arguments

The parties dispute whether Petitioner's use of "procedure" (in place of a "plan") and "sending one or more requests for service" in Petitioner's proposed construction is appropriate. *See* PO Resp. 37–38; Pet. Reply 2–4, 11–12; PO Sur-reply 3, 13. We need not address these arguments in detail because, for the reasons discussed above, we see no reason to depart from the plain meaning of the term "goal satisfaction plan."

f. Conclusion

Based on the complete record and after examining the claims as a whole, the Specification, and the prosecution history, we construe the term "a goal satisfaction plan" according to its plain meaning—"a plan for satisfying a goal."

2. "process characteristics"

The claim term "process characteristics" is recited in dependent claim 9, which depends from claim 5 and further recites "wherein the agent registry data structure includes at least one task declaration, and process characteristics for each active agent." Ex. 1001, 30:13–16.

Citing the testimony of Dr. Lieberman, Petitioner asserts that the ordinary meaning of "process characteristics" is "additional information that may refine how a process is conducted." Pet. 62 (citing Ex. 1003 ¶ 380). In the Institution Decision, we found that Petitioner did not explain the basis for this construction or cite any supporting evidence in the Petition. Inst. Dec. 77 (citing Pet. 62). We noted that Petitioner's proposed "ordinary meaning" of "process characteristics" does not appear to track the plain language of the claim term. *Id.* at 78. For example, it is not apparent from

the words "process" and "characteristics" why "process characteristics" require "additional information" or "refin[ing]" how a process is conducted. We found that, without explanations or citations to record evidence from Petitioner why the term "process characteristics" should be construed as Petitioner proposes, we were unable to determine if the proposed "ordinary meaning" construction is correct. *Id*.

In the Petitioner Reply, Petitioner argues the Specification describes that process characteristics "may include one or more of the following: Machine Type (specifying what type of computer may run the agent), Language (both computer and human interface)." Pet. Reply 12 (citing Ex. 1001, 17:12–21). Citing the testimony of Dr. Lieberman, Petitioner further asserts that the process characteristic "Language (both computer and human interface)" refines the process because an "interface" is the "point at which a connection is made between two elements so that they can work with each other" and the process may refine its implementation based on these points of "connection"—for example, by routing requests to agents which have a registered interface with one another, thus allowing them to more effectively "work with each other." *Id.* at 13 (citing Ex. 1003 ¶ 625).

Patent Owner disagrees with Petitioner's proposed construction and argues that the term "process characteristics" instead should be construed to mean "characteristics of the computer process that may run an agent." PO Sur-reply 13–14. In particular, Patent Owner asserts that the use of "refine" in Petitioner's proposed definition is inappropriate because the two examples of process characteristics in the Specification cited by Petitioner—"Machine Type (specifying what type of computer may run the agent),

Language (both computer and human interface)"—do not provide any indication that they refine the process. *Id.* at 14 (citing Ex. 1001, 17:17–21).

We note, as an initial matter, that it was Petitioner's affirmative duty to explain in the Petition how the challenged claims should be construed and how, as so construed, they are unpatentable. *See* 37 C.F.R. § 42.104(b)(3)–(4). Even if we were to accept Petitioner's belated argument and explanation on its proposed construction of "process characteristics" presented for the first time in the Petitioner Reply, we are not persuaded that the term should be given a meaning beyond its plain meaning indicated by the claim language.

The portion of the Specification relied upon by Petitioner is reproduced below.

Each registered agent *may be optionally* associated with one or more Process Characteristics, which *preferably* could be referenced through their associated Process Characteristics Declaration fields 716 in the parent facilitator Agent Registry 702. Note that these characteristics in certain *preferred embodiments* of the present invention *may include* one or more of the following: Machine Type (Specifying what type of computer may run the agent), Language (both computer and human interface).

Ex. 1001, 17:12–21 (emphases added). As shown above, the portion of the Specification relied upon by Petitioner describes optional or exemplary embodiments. Petitioner, however, does not explain adequately why these embodiments described in the Specification restrict the type of "process" recited in the claim. *See SuperGuide*, 358 F.3d at 875 ("a particular embodiment appearing in the written description may not be read into a claim when the claim language is broader than the embodiment");

WesternGeco, 889 F.3d at 1323–24 ("It is well established that claims are not limited to preferred embodiments, unless the specification clearly indicates otherwise.").

We are also not persuaded by Patent Owner's argument that the term "process characteristics" means "characteristics of the computer *process* that may run an agent" (*see* PO Sur-reply 13–14 (emphasis added) (citing Ex. 1001, 17:17–21)) because the cited passage of the Specification states that "Machine Type" specifies "what type of computer may run the agent," not "what type of computer *process* may run the agent" (*see* Ex. 1001, 17:19–20).

As noted above, claim 9 recites "the agent registry data structure includes at least one task declaration, and process characteristics for each active agent." Ex. 1001, 30:13–16. Accordingly, we construe "process characteristics" according to its plain meaning indicated by the claim language—"characteristics of a process for an agent."

C. Prior Art Overview

Before discussing the obviousness challenges presented in the Petition, we provide an overview of Kiss and FIPA97, the main prior art references asserted against the challenged claims, to provide context for the discussion that follows.

1. Overview of Kiss (Ex. 1005)

Kiss describes "a knowledge management system that supports inquiries of distributed knowledge resources," as illustrated in Figure 1. Ex. 1005, 2:44–45.

PRESENTATION LAYER USER GUI 105 USER INTERFACE LAYER USER AGENT 107 > META AGENT LAYER META AGENT META AGENT AGENT SERVICE LAYER 109 1217 KNOWLEDGE AGENT LAYER 1215 KNOWLEDGE KNOWLEDGE KNOWLEDGE REGISTRY AGENT KNOWLEDGE MODULE LAYER 123 123 ₹₁₁₄ KNOWLEDGE MODULE KNOWLEDGE KNOWLEDGE MODULE MODULE

Figure 1 of Kiss is reproduced below.

Fig. 1

Kiss's Figure 1 shows a conceptual overview of one embodiment of a knowledge management system. *Id.* at 5:1–2. Kiss's knowledge management system 100 includes a presentation layer 103, a user interface layer 105, a meta agent layer 107, a knowledge agent layer 109, a knowledge module layer 111, and an agent service layer 113. *Id.* at 5:3–7.

The meta agent layer 107 includes one or more meta agents 119 that are responsible for analyzing queries or problem formulations provided by the user interface layer 105 and constructing a plan for finding a solution to the problem. *Id.* at 5:20–24. More specifically, "meta agent 119 is responsible for formulating a dynamic 'solution plan' for the distributed inferencing to be performed by the system 100, and allocates tasks to the knowledge agent layer 109 in furtherance of the solution plan." Ex. 1005, 5:33–37. "The meta agent solution plan attempts to employ all elements of information contained in the parsed inquiry in the development of search-space constraints." *Id.* at 8:34–37.

The knowledge agent layer 109 includes multiple knowledge agents 121, each of which may be associated with one or more knowledge modules 123 in the knowledge module layer 111. Ex. 1005, 6:31–35. The knowledge agent 121 is configured to accept from a meta agent 119 a problem statement and convert that problem statement into a format appropriate for the knowledge module 123 associated with the knowledge agent 121. *Id.* at 6:35–38.

2. Overview of FIPA97 (Exs. 1006–1012)

FIPA97 (Exs. 1006–1012) is a specification created by the Foundation for Intelligent Physical Agents (FIPA) beginning in 1996 with an official release date in October 1997. Ex. 1006, Cover, iv (identifying specification as FIPA 97 Version 1.0 issued on October 10, 1997). FIPA97 is a "specification of basic agent technologies that can be integrated by agent systems developers to make complex systems with a high degree of interoperability." *Id.* at v. The specification comprises seven parts: three parts for basic agent technologies (Parts 1–3 relating to agent management, agent communication language, and agent/software integration) and four

informative applications providing examples of how the technologies can be applied (Parts 4–7 describing personal travel assistance, personal assistant, audio-visual entertainment, and broadcasting and network management and provisioning applications). *Id.* at v–vii; *see generally* Exs. 1006–1008 (Parts 1–3); Exs. 1009–1012 (Parts 4–7).

Part 1 of FIPA97 "provides a normative framework within which FIPA compliant agents can exist, operate and be managed." Ex. 1006, vi. Part 2 of FIPA97 describes an "Agent Communication Language (ACL)" that "is based on speech act theory: messages are actions, or communicative acts, as they are intended to perform some action by virtue of being sent." *Id.* The ACL specification "consists of a set of message types and the description of their pragmatics, [i.e.,] the effects on the mental attitudes of the sender and receiver agents." *Id.* The ACL specification "also provides the normative description of a set of high-level interaction protocols, including requesting an action, contract net and several kinds of auctions." *Id.*

Part 2 of FIPA97 discloses a "simple abstract model of inter-agent communication" including ACL messages having components as illustrated in Figure 1 below. Ex. 1007, 7, 12.

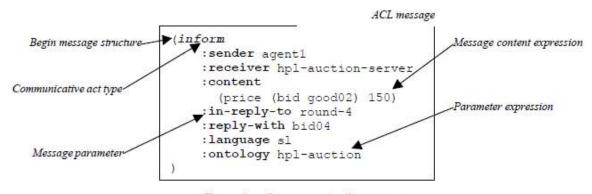


Figure 1 — Components of a message

Figure 1, above, illustrates the main structural elements of an ACL message in FIPA97. *Id.* at 12. "The first element of the message is a word which identifies the communicative act being communicated, which defines the principal meaning of the message." *Id.* Each ACL message contains a set of one or more parameters, including a mandatory ":receiver" parameter that identifies the intended recipient of the message. *Id.* at 13.

Petitioner asserts that FIPA97 was made publicly available as a single document and relies on FIPA97 as a single printed publication for purposes of 35 U.S.C. § 102(a). *See* Pet. 23; Pet. Reply 34–35. As discussed below in the section addressing the status of FIPA97 as a printed publication, FIPA approved and released FIPA 97 Version 1.0 as a single specification. *See infra* § III.D.; Ex. 1026, 5; Ex. 1050 ¶ 165. Thus, although sometimes the seven parts are referred to as "documents," a person of ordinary skill in the art would have considered FIPA97 to be a single reference. *See* Ex. 1003 ¶¶ 143–148. Patent Owner does not dispute that FIPA97 is one reference for purposes of §§ 102 and 103. *See* PO Resp. 117–120.⁷ Because FIPA and skilled artisans considered FIPA97 to be a single specification, we agree that FIPA97 constitutes a single prior art reference, and we treat it as such for purposes of our unpatentability analysis.

⁻

⁷ Contrary to Patent Owner's argument (PO Resp. 117–120), Petitioner did not argue in another case, and the Board did not find, that FIPA97 is seven separate prior art references. *See Microsoft Corp. v. IPA Techs. Inc.*, IPR2019-00838, Paper 13 at 3–5 (PTAB Apr. 3, 2020) (Decision Denying Petitioner Request for Rehearing), Paper 10 at 4–9 (Petitioner's Request for Rehearing, filed Dec. 6, 2019).

D. Status of FIPA97 as a Prior Art Printed Publication

Before reaching the merits of Petitioner's obviousness contentions, all of which are based in part on FIPA97 (Exhibits 1006–1012), we must determine as a threshold matter whether FIPA97 is a prior art printed publication under 35 U.S.C. § 102(a) or § 102(b). See Pet. 23–25. Petitioner bears the burden of establishing by a preponderance of the evidence that FIPA97 is a printed publication. See 35 U.S.C. § 316(e); Nobel Biocare Servs. AG v. Instradent USA, Inc., 903 F.3d 1365, 1375 (Fed. Cir. 2018); Hulu, LLC v. Sound View Innovations, LLC, IPR2018-01039, Paper 29 at 11 (PTAB Dec. 20, 2019) (precedential) (citing *Nobel Biocare*, 903 F.3d at 1375). For purposes of instituting an *inter partes* review we accepted Petitioner's contention, unchallenged in Patent Owner's Preliminary Response, that FIPA97 was available as prior art as of October 1997, more than one year before January 5, 1999, the filing date of the '115 patent. Inst. Dec. 43–45 (citing Pet. 23–25 (citing Ex. 1049 ¶¶ 3, 6, 11, 12, 20–34; Ex. 1003 ¶¶ 121, 122, 125–128, 143–148)). Patent Owner, however, challenges that contention in its Patent Owner Response, and the parties further address the issue in Petitioner's Reply and Patent Owner's Sur-reply. See PO Resp. 45–65; Pet. Reply 17–29; PO Sur-reply 20–35.

The determination of whether a document is a "printed publication" under 35 U.S.C. § 102 "involves a case-by-case inquiry into the facts and circumstances surrounding the reference's disclosure to members of the public." *In re Klopfenstein*, 380 F.3d 1345, 1350 (Fed. Cir. 2004). "Because there are many ways in which a reference may be disseminated to the interested public, 'public accessibility' has been called the touchstone in

determining whether a reference constitutes a 'printed publication'"

Jazz Pharm., Inc. v. Amneal Pharm., LLC, 895 F.3d 1347, 1355 (Fed. Cir. 2018) (quoting In re Hall, 781 F.2d 897, 898–99 (Fed. Cir. 1986)). A reference is considered publicly accessible if it was "disseminated or otherwise made available to the extent that persons interested and ordinarily skilled in the subject matter or art, exercising reasonable diligence, can locate it." Id. at 1355–56 (quoting In re Wyer, 655 F.2d 221, 226 (CCPA 1981)).

In the discussion below, we begin with background information regarding FIPA and an overview of the evidence submitted by Petitioner in support of its contention that FIPA97 was publicly accessible in October 1997. The evidence includes extensive testimony from Dr. Finin, a professor who has personal knowledge of FIPA's activities and the development process of FIPA97. *See* Ex. 1049 ¶¶ 1–55 (Finin Decl.). Dr. Finin was one of the first two FIPA Fellows invited to provide "high quality and independent advice to FIPA." *Id.* ¶ 18 (quoting Ex. 1076, 1); Ex. 1025, 1; Ex. 1062, 1. The evidence also includes testimony from Petitioner's expert witness, Dr. Lieberman, and more than sixty documentary exhibits on which Petitioner relies to show that FIPA97 was publicly accessible in late 1997 and early 1998. *See* Ex. 1003 ¶¶ 121–128, 143–148; Exs. 1021–33, 1047, 1051–1105.

After providing an overview of the evidence, we consider the parties' arguments as to whether FIPA97 was publicly accessible before the January 5, 1999, critical date. For the reasons explained below, we

determine that Petitioner has met its burden to show that FIPA97 was publicly accessible before the critical date.

1. FIPA

FIPA was a non-profit association based in Geneva, Switzerland, created to promote agent-based technology and develop open standards. Ex. 1006, iv (FIPA 97 Specification Version 1.0, Part 1, Foreword); Ex. 1049 ¶ 3. Founded in 1996, FIPA's membership included numerous technology companies, educational institutions, and governmental entities. Ex. 1049 ¶ 3. As of October 1997, FIPA had thirty-five corporate members representing twelve countries. Ex. 1006, iv. According to FIPA documentation, membership was "open to any corporation and individual firm, partnership, governmental body or international organi[z]ation without restriction." *Id.* FIPA stated its intent "to make the results of its activities available to all interested parties." *Id.* Throughout its tenure, FIPA produced standards designed to promote and advance agent-based technology. Ex. 1049 ¶ 3. In 2005, FIPA was incorporated into the Institute of Electrical and Electronics Engineers (IEEE) as one of its standards committees. *Id.*

2. Development of FIPA97

The process of drafting the FIPA 97 specification began with FIPA's first meeting in London in April 1996. Ex. 1049 ¶ 6; Ex. 1058 (Main results

⁸ The corporate members included Alcatel, British Telecommunications, Deutsche Telekom, France Telecom, Hitachi, Hewlett-Packard, IBM, NEC, NTT, Nortel, Siemens, and Toshiba. *See* Ex. 1095, 22.

of London meeting); Ex. 1066 (Resolutions of London meeting). Representatives from twenty-six companies and organizations attended. Ex. 1066, 1. At the meeting, the members agreed on FIPA's mission, drafted statutes and operational principles, and produced a work plan for a specification that would become FIPA 97. Ex. 1058, 1; Ex. 1066, 1–3; Ex. 1049 ¶ 6. The work plan set a December 1997 target for producing a first completed specification. Ex. 1066, 2–3; Ex. 1049 ¶ 7.

FIPA subsequently held several meetings in 1996 and 1997. At the second meeting in June 1996 in Yorktown Heights, NY, FIPA approved several documents, including a framework for FIPA activity and a list of requirements for FIPA-specified agent capabilities. Ex. 1067, 1 (Resolutions of Yorktown meeting); Ex. 1060, 1 (Results of Yorktown meeting); Ex. 1049 ¶ 9. At the third meeting in October 1996 in Tokyo, FIPA approved a final work plan calling for production of a FIPA specification in October 1997. Ex. 1049 ¶ 11; Ex. 1070, 1 (work plan); Ex. 1023 (Results of Tokyo meeting). Also at the Tokyo meeting, FIPA produced its First Call for Proposals, which outlined in detail three technology parts (corresponding to Parts 1–3 of FIPA 97) and four application parts (corresponding to Parts 4–7 of FIPA 97). Ex. 1069, 1–27 (First Call for Proposals); Ex. 1049 ¶ 12.

In 1997, FIPA began to produce draft specifications. At the fourth meeting in January 1997 in Turin, Italy, FIPA publicly released drafts of Parts 1–4 and posted them on the FIPA home page (http://drogo.cselt.stet.it/fipa). Ex. 1021, 1 (Results of Turin meeting); Ex. 1049 ¶ 13. Additionally, FIPA released a Second Call for Proposals at

the Turin meeting. Ex. 1071, 1–3 (Second Call for Proposals); Ex. 1049 ¶ 13. At the fifth meeting in April 1997 in Reston, VA, FIPA produced drafts of Parts 1–7, which were publicly released and posted on the FIPA home page. Ex. 1024 (Results of Reston meeting); Ex. 1061 (Resolutions of Reston meeting); Ex. 1049 ¶ 17. At the sixth meeting in June 1997 in Cheju Island, South Korea, FIPA publicly released revised drafts of Parts 1–7 and posted them on the FIPA home page. Ex. 1025, 1 (Results of Cheju meeting); Ex. 1062, 5 (Resolutions of Cheju meeting); Ex. 1049 ¶ 19. According to Dr. Finin, the Reston Draft and Cheju Draft were substantially complete versions of what would become FIPA 97. Ex. 1049 ¶¶ 17, 19.

Dr. Finin testifies that news of FIPA and its standardization efforts "spread quickly throughout the relatively small community of software agent researchers." Ex. 1049 ¶ 8. For instance, the AgentWeb website, "a meeting place for researchers in agent-based technology from 1995–2000," was home to a "Software Agents" mailing list and a newsletter that had more than 1,300 subscribers in 1996. *Id.*; Ex. 1089, 5. Dr. Finin was "the founder, author, and a subscriber" of the AgentWeb newsletter. Ex. 1049 ¶ 8. The widely distributed AgentWeb newsletters announced upcoming FIPA meetings, reported results of previous meetings, including calls for proposals, and provided links to the specification drafts posted on the FIPA home page. *See id.* ¶¶ 8, 10, 12, 14, 17, 19.

For example, the AgentWeb newsletter dated May 11, 1996, announced the upcoming FIPA June 1996 Yorktown meeting, described as the "FIPA Opening Forum." Ex. 1090, 5; Ex. 1049 ¶ 8. The purpose of the meeting, as stated in the newsletter, was to "refine the list of basic agent

capabilities candidate for FIPA specification; compile a first list of agent capabilities intended for specification by end 1997; and establish the first working groups." Ex. 1090, 5. Likewise, the AgentWeb newsletter dated August 12, 1996, advertised the FIPA October 1996 Tokyo meeting. Ex. 1088, 1; Ex. 1049 ¶ 10. Thereafter, the AgentWeb newsletter dated October 14, 1996, publicized the Call for Proposals issued at the October 1996 Tokyo meeting and provided the deadline for submission of proposals to be considered at the Turin meeting in January 1997. Ex. 1087, 1; Ex. 1049 ¶ 12. FIPA had decided that respondents who submitted proposals would be invited to the January 1997 meeting to present their proposals even if they were not FIPA members. Ex. 1023, 1; *see* Ex. 1069, 27.

Once FIPA began to produce drafts of the specification, AgentWeb newsletters announced those drafts and provided links to access them. The AgentWeb newsletter dated February 2, 1997, reported that "[i]nitial specifications for three technology parts (Agent Management, Agent Communication and Agent/Software Interaction) and one application part (Personal Travel Assistance) have been produced" at the recent Turin meeting. Ex. 1091, 1; Ex. 1049 ¶ 14. The newsletter included a freely accessible and public link to access the draft. Ex. 1049 ¶ 14 (citing Ex. 1091, 1–2). It also indicated that drafts of the remaining three specification parts would be generated at the FIPA meeting to be held in April 1997 in Reston. Ex. 1091, 1–2. A subsequent AgentWeb newsletter dated April 13, 1997, advertised the upcoming Reston meeting and

contained links to information about the meeting on the FIPA website. Ex. 1092, 3; Ex. $1049 \, \P \, 17$.

On May 5, 1997, following the Reston meeting, an AgentWeb newsletter reported that attendees of that meeting produced a revised draft including all seven parts of the specification. Ex. 1093, 2; Ex. 1049 ¶ 17. The newsletter contained individual public links to the seven parts and invited "both members and non-members" to comment, providing an email address for submission. *Id.*; Ex. 1049 ¶ 17. Additionally, the newsletter announced the dates and locations of the next two meetings—the June 1997 Cheju meeting and the seventh meeting to take place in Munich on October 6-10, 1997. Id. Similarly, the AgentWeb newsletter dated June 30, 1997, announced that the Cheju meeting resulted in revised versions of the FIPA specification documents and provided direct links to the seven parts. Ex. 1094, 1–2; Ex. 1049 ¶ 19. Again, the newsletter stated that FIPA invited comments and that non-members making substantial comments would be invited to attend the October 1997 Munich meeting. Ex. 1094, 2. Dr. Finin was among those who submitted comments on the Cheju draft. Ex. 1073; Ex. 1049 ¶ 20.

Meanwhile, the AgentWeb Software Agents mailing list also provided information regarding FIPA's efforts to the community of software agent researchers. *See* Ex. 1049 ¶ 8. Dr. Finin was an organizer of and contributor to the Software Agents mailing list. *Id.* On May 2, 1996, a posting to the mailing list referenced the upcoming June 1996 FIPA meeting in Yorktown Heights, New York. Ex. 1079, 1; Ex. 1049 ¶ 8. Members of the Software Agents mailing list posted comments regarding the Turin draft

after it was released publicly. Exs. 1078, 1081, 1082; *see* Ex. 1049 ¶¶ 14–15. Dr. Finin was among those who shared their thoughts. *See* Ex. 1082; Ex. 1049 ¶ 15. A posting after the Reston meeting included a public and open link to access the Reston draft and invited comments from the mailing list. Ex. 1083, 1; Ex. 1049 ¶ 17.

3. Public Release of FIPA97

FIPA's seventh meeting took place in Munich on October 6–10, 1997. Ex. 1026 (Resolution of Munich meeting); Ex. 1049 \P 20. At this meeting, FIPA incorporated final edits and comments and approved the FIPA 97 specification for publication. Ex. 1026, 1, 5; Ex. 1049 \P 20. The specification as approved at the meeting was called "FIPA 97 ver. 1.0," or FIPA 97 Version 1.0. Ex. 1026, 5. Working groups for various parts of the specification were given about one month to check for consistency and make minor edits. *Id.* at 2; Ex. 1049 \P 20.

An "initial" version of FIPA 97 Version 1.0, approved at the Munich meeting and dated October 10, 1997, was posted to the FIPA website, housed at the time at http://drogo.cselt.stet.it/fipa. Ex. 1049 ¶¶ 20–21. According to Dr. Finin, the specification documents were available online and free for anybody to access by sometime in October 1997. *Id.* ¶ 21. On November 18, 1997, an AgentWeb newsletter announced completion of FIPA 97 Version 1.0 and its publication on the FIPA website. Ex. 1086, 1–2; Ex. 1049 ¶ 21. The newsletter provided individual, direct links to the seven parts of the specification on the FIPA website. Ex. 1086, 1–2. The links were not password protected and were open to the public without a requirement for secrecy or confidentiality. Ex. 1049 ¶ 21. As with the

earlier AgentWeb newsletters, the newsletter containing links to FIPA 97 Version 1.0 was sent to more than 1,300 subscribers. *Id*.

Dr. Finin testifies that in late 1997, "a few weeks after the Munich meeting," he accessed the approved FIPA 97 Version 1.0 posted on the FIPA website. *Id.* ¶¶ 20–21. He specifically recalls accessing the documents in late 1997 to review the first major work product of FIPA and to prepare for FIPA's upcoming January 1998 meeting in Palo Alto, which he attended. *Id.* ¶ 21 (citing Ex. 1074). Dr. Lieberman also testifies that he recalls FIPA 97 Version 1.0 being publicly available on the FIPA website throughout late 1997 and early 1998 and that he accessed it in late 1997 as a member of the interested public. Ex. 1003 ¶ 125.

The release of FIPA 97 Version 1.0 was well publicized in the weeks after the Munich meeting. Ex. 1049 ¶ 22. For example, on October 20, 1997, the EETimes featured an article reporting FIPA's approval of the FIPA 97 specification. Ex. 1095, 22; *see* Ex. 1049 ¶ 22. The article was based on an interview with Leonardo Chiariglione, the president of FIPA. Ex. 1095, 22. The article described the seven parts of the specification: "The first three parts cover different aspects of agent behavior: agent management; agent communication; and agent-software interaction. The four remaining parts, which cover application areas, . . . are: personal travel assistance; personal assistant; audio-visual entertainment and broadcast; and network provision and management." *Id.* After describing FIPA's plans for 1998, including testing of FIPA 97 Version 1.0 to provide input for a further round of standardization, the article referred readers to the FIPA website for

information regarding the released specification: "CSELT^[9] maintains extensive information on FIPA's activities at www.cselt.stet.it/fipa." *Id.* (emphasis omitted). It concluded with a quote from Dr. Chiariglione regarding the specification's public availability: "It is our policy to make the standard freely available over the Internet,' Chiariglione said. 'FIPA will retain the copyright but it will be free for others to use." *Id.*

The November-December 1997 issue of IEEE Internet Computing also announced the release of the FIPA 97 specification: "The Foundation for Intelligent Physical Agents, a non-profit organization established to promote emerging agent-based applications, has released its first specification. Named FIPA 97, the specification will provide a benchmark for interoperable products." Ex. 1096, 93; Ex. 1049 ¶ 22. The news brief directed readers to the FIPA website for the text of the specification. Ex. 1096, 93 ("The text is available at http://drogo.cselt.stet.it.fipa/."¹¹); Ex. 1049 ¶ 22.

Sometime after the Munich meeting, FIPA also produced a hardcopy book version of the FIPA 97 Version 1.0 specification to be sent to FIPA members and various institutions and standards groups. Ex. 1049 ¶ 24; *see* Ex. 1026, 1; Ex. 1063, 1 (Resolution of the Palo Alto meeting, Jan. 29,

⁹ Centro Studi e Laboratori Telecommunicazioni, Dr. Chiariglione's employer at the time. *See* Ex. 1095, 22.

¹⁰ The record suggests this website (http://www.cselt.stet.it/fipa) was a mirror of the FIPA website (http://drogo.cselt.stet.it/fipa) in 1997. *See* Ex. 1049 ¶ 22; Ex. 1095, 22; Tr. 94:11–14.

¹¹ The URL provided in the article contains a typographical error. *See* Ex. 1049 \P 22 (correcting the URL to http://drogo.cselt.stet.it[/]fipa/).

1998). At least two copies of the book were available in libraries in January 2019. Ex. 1049 ¶ 24; Ex. 1057, 1 (WorldCat catalog entry for "Fipa specification: Version 1.0"); Ex. 1055 (cover page and table of contents of each part in copy at library in Italy); Ex. 1056 (cover page and table of contents of Part 1 in copy at library in Switzerland). Dr. Finin testifies that the books contain the November 28, 1997, edited version of FIPA 97 Version 1.0, which "only made minor edits (mostly spelling and formatting) over the October 10, 1997 version." Ex. 1049 ¶ 25 (citing Ex. 1055, 5 (Part 2 "publication date" of November 28, 1997); Ex. 1056).

4. Publications and Patents Referring to FIPA97 and FIPA Activities
In late 1997 and 1998, several papers reviewing and outlining the
FIPA 97 specification were published and presented at meetings. See
Ex. 1049 ¶¶ 26–30. A paper dated December 1997 memorializes a
presentation made to a meeting on Intelligent Agent Technology organized
by the EPSRC¹² Community Club in Advanced Computing Techniques.
Ex. 1097, Cover ("Dickinson");¹³ see Ex. 1049 ¶ 26. This paper outlines the
background and rationale for the creation of an agent interoperability
standard. Ex. 1097, 1–3. It also describes the development history of the
FIPA 97 specification, noting that FIPA's work program "culminated in the
publication of an initial draft standard, FIPA 97, at the Munich meeting on

¹² "The Engineering and Physical Sciences Research Council (EPSRC) is the main funding body for engineering and physical sciences research in the UK." Engineering and Physical Sciences Research Council, epsrc.ukri.org/about (last visited Sept. 28, 2020).

¹³ Ian J. Dickinson, *Agent Standards*, HP Laboratories Bristol, HPL-97-156 (Dec. 1997).

October 1997." *Id.* at 3. Dickinson further provides that "[a]ll FIPA documents and meeting outputs are publicly available on the web" at "http://drogo.cselt.stet.it/fipa/," and "comments and review have been sought at each stage of the process." *Id.* at 3, 7 n.9. The paper then describes the features of the specification's three substantive technical sections, Parts 1–3. *Id.* at 3–6.

Similarly, a 1998 paper titled "Industrial Applications of Multi-Agent Technology" summarizes FIPA's background and presents an overview of the three technical parts (i.e., Parts 1–3) of FIPA 97 Version 1.0 released in October 1997. Ex. 1099, 12–13 ("Steiner"); ¹⁴ see Ex. 1049 ¶ 28. The Steiner paper provides the FIPA website address and explains that the four application parts (i.e., Parts 4–7) will be used in field trials to gather information to be incorporated into a revised version of FIPA 97. Ex. 1099, 13 & n.1.

Likewise, a paper titled "FIPA — towards a standard for software agents" appearing in the July 1998 issue of the BT Technology Journal explains the motivation for an agent standard and provides an overview of FIPA's background and activities. Ex. 1100, 51–52 ("O'Brien"); ¹⁵ see Ex. 1049 ¶ 29. It then describes the different parts of the FIPA 97 Version 1.0 specification issued in October 1997. Ex. 1100, 51–52. ¹⁶

_

¹⁴ Donald Steiner, Siemens AG, *Industrial Applications of Multi-Agent Technology* (IEEE 1998).

¹⁵ P.D. O'Brien & R.C. Nicol, *FIPA* — towards a standard for software agents, BT Tech. J. Vol. 16, No. 3 (July 1998).

 ¹⁶ Dr. Finin testifies that O'Brien provides public links to FIPA97. Ex. 1049
 ¶ 29. The copy of O'Brien entered into the record, however, appears to be

Dr. Finin cites several other publications that reference FIPA's development of an agent communication standard in the 1997–98 timeframe. Ex. 1049 ¶ 31 (citing Exs. 1027–29). Dr. Finin also identifies several patent applications in the same timeframe that refer to FIPA's agent communication language. *Id.* ¶ 32 (citing Exs. 1030–33).

5. The FIPA Website and Exhibits 1006–1012

Sometime in 1998, the FIPA website migrated from its original site (http://drogo.cselt.stet.it/fipa) to fipa.org. Ex. 1049 ¶ 23; *see also* Ex. 1026 (Resolution of Munich meeting indicating FIPA's plans for the "redesign of a new FIPA home page"); Ex. 1065, 4 (Resolutions of the Durham meeting in October 1998 indicating the website will be transferred to www.fipa.org). The fipa.org website still exists today even though FIPA is no longer active as a standalone organization. *See* Ex. 1049 ¶¶ 23, 48–49. The current FIPA website maintains a repository of past FIPA documents, including meeting notes, press releases, FIPA resolutions, and different versions of the FIPA specification. *Id.* ¶ 49.

Dr. Finin testifies that the "initial" version of FIPA 97 Version 1.0 (i.e., the specification posted on the FIPA website on October 10, 1997) "remained publicly accessible during all of FIPA's future activities and is still available on FIPA's home page today." *Id.* ¶ 21. According to Dr. Finin, Exhibits 1006–1012 (collectively referred to as FIPA97) are Parts 1–7 of FIPA 97 Version 1.0 as found on the current fipa.org website.

missing several pages, including one containing endnotes 10–12 that might provide links to the FIPA website. *See* Ex. 1100, 52 ("FIPA97 (issued in October 1997) [10–12] is the first output from FIPA covering part of the requirements for an agent standard.").

Id. Based on his personal knowledge, Dr. Finin further testifies that Exhibits 1006–1012 are the "same version" and contain "the same disclosures, content and information" as Parts 1–7 of FIPA 97 Version 1.0 that were publicly available on the FIPA website (http://drogo.cselt.stet.it/fipa) on October 10, 1997, and which Dr. Finin himself accessed in late 1997. Id. ¶¶ 21, 34. He also notes that although Exhibit 1006 has a typographical error relating to the version number in the header of its odd pages, ¹⁷ Exhibit 1006 is identical to the version of Part 1 of FIPA 97 Version 1.0 that was released on October 10, 1007. Id. ¶ 21. Additionally, as evidence that FIPA 97 Version 1.0 has been continuously available on fipa.org since the website migration, Dr. Finin cites a set of Internet Archive records beginning in 2000 showing where each part of that version of the specification could be accessed. Id. (citing Ex. 1054).

Dr. Finin testifies that the original FIPA website, http://drogo.cselt.stet.it/fipa, remained live for several years after the website transitioned to fipa.org. Ex. 1049 ¶ 23. The Internet Archive Wayback Machine contains an archived screen capture of the website http://drogo.cselt.stet.it/fipa from December 1, 1998. *See* Ex. 1051; Ex. 1049 ¶¶ 23, 54. According to Dr. Finin, the archived page shows that the FIPA 97 specification was live and freely available on the FIPA website home page at that time. Ex. 1049 ¶ 23; Ex. 1051, 1 ("FIPA has already developed a seven-part specification called <u>FIPA 97</u>. Implementations of FIPA 97 are undergoing field trials that will last until October 1998 when

 $^{^{17}}$ The header on odd pages reads "FIPA 1997 Part 1: Version 2.4." *E.g.*, Ex. 1006, 3.

version 2 of FIPA 97 will be produced."); Ex. 1049 ¶ 23. The home page provided links (i.e., "FIPA 97") to actual specification documents, but those links have not been maintained in the archive. Ex. 1049 ¶ 23. Dr. Finin testifies that the screen capture from the Internet Archive is consistent with the mirror of the former FIPA site hosted by Leonardo Chiariglione. *Id.* ¶ 51 (citing Ex. 1103 (http://leonardo.chiariglione.or/standards/fipa/)). Dr. Chiariglione's mirror is still available, and documents hosted on the mirror are "accurate and complete copies of FIPA documents that were available to FIPA members." *Id.*

6. Analysis

Petitioner argues that FIPA97 was a publicly accessible printed publication as of October 10, 1997, when it was posted on the FIPA website. Pet. 23; Pet. Reply 15–21. More specifically, Petitioner argues that (1) FIPA 97 Version 1.0 was publicly accessible on October 10, 1997, and (2) the version of the FIPA specification found in Exhibits 1006–1012, referred to herein as FIPA97, is the same specification that was posted on the FIPA website on October 10, 1997, and named FIPA 97 Version 1.0. *See*, *e.g.*, Pet. 24 (arguing FIPA 97 Version 1.0 was publicly accessible in late 1997); Pet. Reply 17–20 (arguing that Exhibits 1006–1012 are the same documents that were made public as FIPA 97 Version 1.0). Patent Owner addresses the first contention when it argues the evidence does not show any version of FIPA 97 Version 1.0 was available on the FIPA website. *See*, *e.g.*, PO Resp. 47–48. It also challenges the second contention when it argues Petitioner has failed to show that Exhibits 1006–1012 are identical to the version of the FIPA specification that allegedly was publicly accessible

before the critical date. *See, e.g., id.* at 48. In our analysis below, we address the two questions in turn.

Considering all the facts and circumstances surrounding the development of FIPA 97 Version 1.0 and its publication on the FIPA website, we find that FIPA 97 Version 1.0 was disseminated or otherwise made available to the extent that persons interested and ordinarily skilled in the art, exercising reasonable diligence, could locate it. See Jazz Pharm., 895 F.3d at 1355–56. First, the uncontested evidence shows that members of the relevant public (i.e., persons of ordinary skill in the field of software agent-based technology) knew of the release of FIPA 97 Version 1.0 in late 1997, prior to the critical date. As detailed above, FIPA was open to corporations and educational and governmental organizations without restriction. Ex. 1006, iv. FIPA's members included many industry leaders whose employees attended FIPA meetings, including the October 1997 meeting in Munich where FIPA 97 Version 1.0 was approved for publication. See id.; Ex. 1095, 22. FIPA meetings and activities were publicized among the larger community of software agent researchers via the AgentWeb website and its associated Software Agents mailing list and AgentWeb newsletter, which had more than 1,300 subscribers. Ex. 1090, 5; Ex. 1088, 1; Ex. 1087, 1; Ex. 1091, 1–2; Ex. 1092, 3; Ex. 1093, 2; Ex. 1094, 1–2; Ex. 1086, 1–2; see Ex. 1049 ¶¶ 8, 10, 12, 14, 17, 19. The newsletter in particular informed subscribers of the development of the FIPA specification during 1996 and 1997 and provided detailed information regarding the release of FIPA 97 Version 1.0 in a November issue. Ex. 1086, 1–2. News articles in periodicals published in late 1997 also announced that FIPA had

released and published FIPA 97 Version 1.0. Ex. 1095, 22; Ex. 1096, 93; *see* Ex. 1049 ¶ 22. In addition, the record contains several papers published in late 1997 and 1998, prior to the critical date, describing FIPA 97 Version 1.0 and its release in October 1997. *See* Ex. 1097, 1–7; Ex. 1099, 12–13; Ex. 1100, 51–52; Ex. 1049 ¶¶ 26–30; *see also* Ex. 1049 ¶¶ 31–32 (citing Exs. 1027–33 (other publications and patents referring to FIPA specification)).

The evidence of record also demonstrates that members of the relevant public, exercising reasonable diligence, could have located FIPA 97 Version 1.0 in late 1997 on the FIPA website, housed at the time at http://drogo.cselt.stet.it/fipa. FIPA published FIPA 97 Version 1.0 on its website at the conclusion of the Munich meeting on October 10, 1997, or shortly thereafter. See Ex. 1049 ¶ 20. In the several months leading up to the Munich meeting, persons of ordinary skill in the art would have known about the FIPA website through the widely distributed AgentWeb newsletters and the Software Agents mailing list, which provided website information or direct links to drafts of the specification and meeting announcements and reports. See Ex. 1091, 1–2; Ex. 1092, 3; Ex. 1093, 2; Ex. 1094; Ex. 1082, 1; Ex. 1083, 1. Therefore, people working in the field would have been sufficiently familiar with FIPA's activities and its website to look for FIPA 97 Version 1.0 on the FIPA website when it was posted after the Munich meeting. Indeed, both Dr. Finin, who was affiliated with FIPA, and Dr. Lieberman, who worked in the software agent field, testify that they accessed FIPA 97 Version 1.0 on the FIPA website in late 1997. Ex. 1049 ¶ 21; Ex. 1003 ¶ 125.

Moreover, the AgentWeb newsletter dated November 18, 1997, provided a link to the FIPA website and individual links to the seven parts of FIPA 97 Version 1.0 published on the website. Ex. 1086, 1–2; *see* Ex. 1049 ¶ 21. Thus, that issue of the newsletter provided more than 1,300 interested members of the public with direct access to FIPA 97 Version 1.0 at least as of November 18, 1997.

News articles and papers published in late 1997 also provided readers with the website address where FIPA 97 Version 1.0 could be found. *See* Ex. 1095, 22; Ex. 1096, 93; Ex. 1097, 7 n.9. The news articles in particular likely reached a very wide audience because they appeared in publications directed to subject matter broader than agent-based technology. *See* Ex. 1095 (EETimes); Ex. 1096 (IEEE Internet Computing). The EETimes article was dated October 20, 1997, suggesting that FIPA 97 Version 1.0 was available on the FIPA website at least as of that date.

The undisputed evidence also demonstrates that FIPA 97 Version 1.0 was freely available on the FIPA website without a password or any other restrictions and access was not subject to any requirement or expectation of secrecy or confidentiality. *See* Ex. 1049 ¶ 21; Ex. 1095, 22; *see also* Ex. 1006, iv (stating FIPA intended to make its results available to all interested parties). This evidence further supports our finding that FIPA 97 Version 1.0 was publicly accessible in late 1997. *See Jazz Pharm.*, 895 F.3d at 1358–59; *Voter Verified, Inc. v. Premier Election Solutions, Inc.*, 698 F.3d 1374, 1380–81 (Fed. Cir. 2012); *MIT v. AB Fortia*, 774 F.2d 1104, 1109 (Fed. Cir. 1985).

Patent Owner's arguments, many of which attack pieces of evidence individually, do not persuade us that Petitioner has failed to show that FIPA 97 Version 1.0 was publicly accessible. First, Patent Owner argues that no evidence shows the original FIPA website (http://drogo.cselt.stet.it/fipa) existed prior to a December 1, 1998, Internet Archive capture. PO Resp. 55 (citing Ex. 1051). To the contrary, much of the documentary evidence from late 1997 and testimonial evidence identifies that website or its mirror as the FIPA website during the relevant time period. *See* Ex. 1049 ¶ 20–23; Ex. 1092, 3; Ex. 1093, 2; Ex. 1095, 22; Ex. 1096, 93; Ex. 1097, 7 n.9. Notwithstanding the absence of an Internet Archive capture for the website from a date prior to December 1998, we find that, based on the totality of evidence in the record, the original FIPA website existed in late 1997.

Patent Owner also argues that none of the documents cited by Petitioner provide active links to FIPA 97 Version 1.0 and therefore are insufficient proof of public accessibility. PO Resp. 54; PO Sur-reply 21–22. Again, based on the totality of evidence in the record, including but not limited to the testimony of Dr. Finin that he accessed FIPA 97 Version 1.0 on the FIPA website in late 1997, we find that FIPA 97 Version 1.0 was available on the FIPA website at that time, notwithstanding the lack of active links today, more than twenty years later. Patent Owner finds fault with Dr. Finin's testimony on this point because he does not claim to have used any of the links in the AgentWeb newsletters to access FIPA 97 Version 1.0. PO Sur-reply 35 (citing Ex. 1049 ¶ 21). Patent Owner, however, overlooks Dr. Finin's testimony that he was the founder and author of the AgentWeb

newsletter, implying that he created the links in the newsletter. *See* Ex. 1049 ¶ 8. Therefore, based on Dr. Finin's personal knowledge regarding the links in the AgentWeb newsletter dated November 18, 1997, and the other evidence corroborating his testimony, we find that FIPA 97 Version 1.0 was available on the FIPA website in late 1997.

Patent Owner further asserts that, to the extent the Internet Archive capture from December 1998 provides an operable download link, it links to Version 2.0 of the FIPA 97 specification. PO Resp. 55–56 (citing Ex. 1051). It is not surprising, however, that FIPA's website in December 1998 provided links to FIPA 97 Version 2.0, which FIPA released in October 1998 to provide minor updates to two parts of the specification. *See* Ex. 1049 ¶ 35; Ex. 1053, vi. In any event, the December 1998 Internet Archive capture at least shows that the FIPA website was live at that time, which was prior to the critical date. *See* Ex. 1049 ¶ 23 (citing Ex. 1051, 1).

In its Sur-reply, Patent Owner argues for the first time that Petitioner has not demonstrated that a person of ordinary skill in the art in 1997 could have found FIPA 97 Version 1.0 using search tools or that the FIPA website was indexed so the specification could be located. PO Sur-reply 31. Further, Patent Owner argues that the existence of different FIPA websites at various times would have made it even more difficult to find the correct version of the FIPA specification without sufficient indexing or search tools. *Id.* at 33.

Even if we consider this late argument, we find it unpersuasive. As detailed above, the uncontested evidence shows that the address of the FIPA website itself was widely known among those skilled in the art and that

FIPA routinely provided links to the FIPA specification on the website's home page. *See* Ex. 1095, 22; Ex. 1096, 93; Ex. 1097, 7 n.9; Ex. 1051, 1; Ex. 1021, 1; Ex. 1025, 1. The November 1997 AgentWeb newsletter also provided direct links to FIPA 97 Version 1.0. Ex. 1086, 1–2. Under these circumstances, we find that a member of the interested public could have found FIPA 97 Version 1.0 without search tools or indexing by using the links in the AgentWeb newsletter or navigating to the well-known FIPA website home page. We also find that the record, including Dr. Finin's testimony, satisfactorily explains the various FIPA websites and website addresses over time and clearly identifies the FIPA website that was being used in late 1997. *See* Ex. 1049 ¶¶ 22–23, 48–49, 51.

Having determined that FIPA 97 Version 1.0 was publicly accessible on the FIPA website in late 1997, as early as October 10 and no later than November 18, we turn to whether Exhibits 1006–1012 (collectively referred to as FIPA97) contain the same version of the FIPA specification that was available on the FIPA website during that timeframe. Dr. Finin testifies that Exhibits 1006–1012, documents available on the current FIPA website (fipa.org) and identified as FIPA 97 Version 1.0, are the same version with the same content as Parts 1–7 of FIPA 97 Version 1.0 that were released at the FIPA Munich meeting on October 10, 1997, and were publicly available on the FIPA website (http://drogo.cselt.stet.it/fipa) in late 1997. Ex. 1049

As an initial matter, the October 10, 1997, date on the cover pages of several parts of FIPA97 supports Dr. Finin's testimony that FIPA97 is the same as FIPA 97 Version 1.0 as published on the FIPA website in late 1997.

See Ex. 1006, Cover; Ex. 1007, Cover; Ex. 1008, Cover; Ex. 1010, Cover; Ex. 1012, Cover; see also Ex. 1009, Cover (Part 4 identifying a 1997 copyright date); Ex. 1011, Cover (Part 6 identifying a 1997 copyright date). Patent Owner contends that Petitioner cannot rely on the date stamps or copyright notices on Exhibits 1006–1012 to establish public accessibility because they are hearsay. PO Resp. 47; PO Sur-reply 23–25. We agree with Petitioner that Patent Owner has waived this argument because it did not raise an objection on evidentiary grounds pursuant to 37 C.F.R. § 42.64(b)(1). See Pet. Reply 18. Furthermore, we agree with Petitioner that the dates on the cover pages are not hearsay because they are evidence tending to show that FIPA97 is identical to FIPA 97 Version 1.0, not statements offered to show Exhibits 1006–1012 were published on a certain date. See id. (citing Apple Inc. v. VirnetX Inc., IPR2016-01585, Paper 32 at 58 (PTAB Feb. 20, 2018)).

Patent Owner also argues that Petitioner cannot rely on the cover page dates alone as proof of the documents' public accessibility. PO Surreply 23. The date stamps, however, are only part of the totality of evidence offered by Petitioner to establish public accessibility. As such, they are relevant evidence supporting a finding that FIPA97 was publicly accessible. *See Hulu*, Paper 29 at 17–18 (citing *Nobel Biocare*, 903 F.3d at 1377).

Patent Owner argues that the existence of multiple versions of FIPA 97 Version 1.0 undercuts Petitioner's position and Dr. Finin's testimony that Exhibits 1006–1012 are the version of FIPA 97 Version 1.0 that was publicly accessible in late 1997. *See* PO Resp. 48–53; PO Surreply 27. For example, Patent Owner points to Dr. Finin's description of the

version released on October 10, 1997, as an "initial" version, after which final minor edits were to be made. PO Resp. 50 (citing Ex. 2068, 86:11–15, 88:9–89:25); see Ex. 1049 ¶ 21. Patent Owner cites an Internet Archive capture in the record referring to "FIPA 97 specification ver. 1.0 (Reston meeting)." PO Resp. 50–51 (citing Ex. 1105, 27). Patent Owner also cites evidence, including Dr. Finin's testimony, that a different version of FIPA 97 Version 1.0 was published in hardcopy books. *Id.* at 51 (citing Exs. 1055, 1056; Ex. 1049 ¶ 25 (stating that "FIPA printed the November 28, 1997, edited version of the specification" in the books)).

Patent Owner argues that because these various versions of FIPA 97
Version 1.0 have not been substantively introduced into evidence so that the differences can be ascertained, Petitioner has not shown that Exhibits 1006–1012 are the version that was publicly accessible on the FIPA website in late 1997. *See* PO Resp. 52–53. We disagree. Dr. Finin testifies that Exhibits 1006–1012 are the same documents that were released at the conclusion of the FIPA meeting in Munich on October 10, 1997, and were made publicly available at the time. Ex. 1049 ¶ 21, 34. Other evidence of record corroborates Dr. Finin's testimony and adequately explains the multiple versions of the specification. *See* Pet. Reply 17. As set forth in detail above, FIPA released a version of FIPA 97 Version 1.0 on October 10, 1997, and made it available on the FIPA website soon thereafter. *See* Ex. 1049 ¶ 21; Ex. 1086, 1–2; Ex. 1095, 22; Ex. 1096, 93. It is clear from the record that any earlier versions of the specification, such as the version made available after the Reston meeting six months before FIPA 97

Version 1.0, were drafts made available for public comment. *See* Pet. Reply 20–21; Ex. 1049 ¶¶ 16–18; Ex. 1024; Ex. 1061.

The record also shows that the version published in book form is a later version, dated November 28, 1997, containing minor formatting and clerical edits. *See* Ex. 1049 ¶ 25; Ex. 1055, 5. Petitioner does not rely on the book version as a prior art reference or assert that it was publicly accessible. *See* Pet. 23–24; Pet. Reply 21. The hardcopy book excerpts in the record merely corroborate Dr. Finin's testimony that FIPA's activities and release of the FIPA specification were known in the art. *See* Ex. 1049 ¶ 24.

Patent Owner also points to the erroneous header on odd pages in Exhibit 1006 as calling into question which version of the specification is in Exhibits 1006–1012. PO Resp. 52. We credit Dr. Finin's unrebutted testimony that the header on some pages in Exhibit 1006 is a typographical error. *See* Ex. 1049 ¶ 21. Patent Owner has not cited, nor do we see, evidence in the record suggesting a FIPA 97 Version 2.4 was made publicly available. *See* PO Resp. 52.

Patent Owner finds fault with Exhibits 1006–1012 because they were obtained after the critical date and could not have been obtained from a website prior to the critical date. *See* PO Resp. 61–62; PO Sur-reply 21. In his Declaration, Dr. Finin testifies that Exhibits 1006–1012 are available on the FIPA website today (i.e., fipa.org), and the earliest Internet Archive record of the relevant website pages shows the documents were posted in 2000. Ex. 1049 ¶ 21 (citing Ex. 1054). Patent Owner contends that in his deposition Dr. Finin acknowledged that Exhibits 1006–1012 could have

been obtained from files saved in the Internet Archive between 2003 and 2004. PO Resp. 47–48 (citing Ex. 2013, 93:12–94:2, 96:7–20). In either case, Patent Owner argues, the dates are after the critical date of the '115 patent. *Id.* at 48; PO Sur-reply 22. We agree with Petitioner, however, that the date Exhibits 1006–1012 were obtained is immaterial if they are digital copies of documents that are shown to have been publicly accessible before the critical date. *See* Pet. Reply 19 (citing *In re Wyer*, 655 F.2d at 226–27).

Finally, Patent Owner argues that the testimony of Dr. Finin and Dr. Lieberman is conclusory, unreliable, and uncorroborated and therefore insufficient to establish public accessibility. PO Resp. 57–60; PO Surreply 20–23. "[C]orroboration is required of any witness whose testimony alone is asserted to invalidate a patent, regardless of his or her level of interest." *Nobel Biocare*, 903 F.3d at 1377–78 (quoting *Finnigan Corp. v. ITC*, 180 F.3d 1354, 1369 (Fed. Cir. 1999)). This corroboration requirement applies when relying on witness testimony to establish public accessibility of a prior art reference. *See id.* at 1377–81; *Typeright Keyboard Corp. v. Microsoft Corp.*, 374 F.3d 1151, 1158–60 (Fed. Cir. 2004). Corroborating evidence may include documentary or testimonial evidence, and circumstantial evidence may provide sufficient corroboration. *Nobel Biocare*, 903 F.3d at 1378. Determining whether testimony has been corroborated "involves an assessment of the totality of the circumstances including an evaluation of all pertinent evidence." *Id.*

We are not persuaded by Patent Owner's argument regarding the testimony of Dr. Finin and Dr. Lieberman. Dr. Finin's testimony is based on

his personal knowledge as someone who was directly involved in FIPA's activities by submitting comments on draft specifications and attending meetings, for example, and providing independent advice as a FIPA Fellow. His testimony that FIPA approved FIPA 97 Version 1.0 at the Munich meeting on October 10, 1997, and posted it to the FIPA website so that it was publicly accessible is corroborated by the evidence in the record of the facts and circumstances surrounding the development and release of the specification as analyzed above. Dr. Lieberman's testimony that as a member of the interested public he accessed FIPA 97 Version 1.0 in late 1997 is corroborated by the same evidence.

As for Dr. Finin's testimony, based on his personal knowledge, that Exhibits 1006–1012 are the same as the version of FIPA 97 Version 1.0 that was publicly accessible on the FIPA website in late 1997, we find it to be credible and corroborated by other evidence of record. We are not persuaded that Dr. Finin's inability to recall many of the details of a 300-page specification more than twenty years after it was created undermines his testimony. *See* PO Resp. 58–60. Furthermore, we find that the evidence discussed above, including the identification of Exhibits 1006–1012 on their cover pages or elsewhere as FIPA 97 Version 1.0 with a date of October 10, 1997, corroborates Dr. Finin's testimony that the version of the specification in Exhibits 1006–1012 is the version that was publicly accessible on the FIPA website in late 1997, and not some other version of the FIPA specification.

For these reasons, we find that a preponderance of the evidence shows that Exhibits 1006–1012 are the version of FIPA 97 Version 1.0 released on

October 10, 1997, and posted on the FIPA website in late 1997. As discussed above, a preponderance of the evidence shows that the October 10, 1997 version of FIPA 97 Version 1.0 was publicly accessible in late 1997. Accordingly, we find that Petitioner has met is burden to show that FIPA97, submitted as Exhibits 1006–1012 and relied on by Petitioner in its unpatentability challenges, was publicly accessible prior to the critical date of January 5, 1999, and therefore is available as prior art to the '115 patent under 35 U.S.C. § 102(a).

E. Prior Art Status of Kiss

We next address the threshold issue of whether Kiss (Ex. 1005) qualifies as prior art in this proceeding. As indicated above, Petitioner relies on Kiss as a prior art reference in all of the asserted grounds of unpatentability presented in the Petition. *See* Pet. 3–4.

Petitioner has the burden of persuasion to prove unpatentability by a preponderance of the evidence. *Dynamic Drinkware, LLC v. Nat'l Graphics, Inc.*, 800 F.3d 1375, 1379 (Fed. Cir. 2015). Petitioner also has the initial burden of production to show that a reference is prior art to the challenged claims under a relevant section of 35 U.S.C. § 102. *See id.* Once Petitioner has met that initial burden, the burden of production shifts to Patent Owner to argue or produce evidence that the asserted reference is not prior art to the claims. *Id.* at 1380. Once Patent Owner has met that burden of production, the burden of production returns to Petitioner. *Id.*

The filing date of the '115 patent is January 5, 1999. Ex. 1001, code (22). As noted above, Kiss is a United States patent that arose from an

application filed July 21, 1999, claiming the benefit of priority to a provisional application filed July 21, 1998. Ex. 1005, codes (22), (60).

Petitioner asserts that Kiss is prior art to the '115 patent under 35 U.S.C. § 102(e) because Kiss is entitled to the benefit of priority to the filing date of its provisional application (Ex. 1036, "Kiss Provisional Application"). Pet. 16–20. "A reference patent is only entitled to claim the benefit of the filing date of its provisional application if the disclosure of the provisional application provides support for the claims in the reference patent in compliance with § 112, ¶ 1." *Dynamic Drinkware*, 800 F.3d at 1381.

In *Ex parte Mann*, the Board held that "under *Dynamic Drinkware*, a non-provisional child can be entitled to the benefit of a provisional application's filing date if the provisional application provides sufficient support for *at least one claim* in the child." 2016 WL 7487271, at *6 (PTAB Dec. 21, 2016) (emphasis added) (discussing whether *Dynamic Drinkware* requires "support in the provisional . . . for all claims, any claim, or something in between"). In addition, the Board held that a "subject matter test" is also required—that is, "the [party claiming priority] also must show that the subject matter relied upon in the non-provisional is sufficiently supported in the provisional application [and that t]his subject matter test is in addition to the comparison of claims required by *Dynamic Drinkware*." *Id.* at *5.

Recognizing these requirements, Petitioner asserts that "each element of [claim 1 of Kiss] has written description support in the Kiss Provisional," providing detailed citations to the supporting disclosures from the Kiss

Provisional Application for each limitation of claim 1 of Kiss. Pet. 16–18. Addressing the "subject matter test," Petitioner asserts that "the teachings that Petitioner relies upon were carried forward from the Kiss Provisional to Kiss" and provides a detailed mapping of the relied-upon portions of Kiss to the corresponding portions of the Kiss Provisional Application. *Id.* at 18–20.

In the Institution Decision, we determined, based on the preliminary record, that Petitioner has presented sufficient argument and evidence to meet its initial burden of production on the issue of whether Kiss is entitled to the benefit of the filing date of the Kiss Provisional Application so as to shift the burden of production to Patent Owner to argue or produce evidence that Kiss is not prior art to the challenged claims. Inst. Dec. 25.

In its Preliminary Response, Patent Owner asserted that Kiss is not entitled to the priority date of its provisional application. Prelim. Resp. 66–67. In the Institution Decision, we determined, based on the preliminary record, the argument and evidence presented by Patent Owner was insufficient to shift the burden of production back to Petitioner. Inst. Dec. 25–27. We noted, however, a final determination on this particular issue will be made based on a full record developed during the course of trial. *Id.* at 27.

During the trial, Patent Owner did not present any argument or evidence on this issue, nor did it dispute Kiss qualifies as prior art in this proceeding. *See generally* PO Resp.

Based on the complete record, we determine that Petitioner has established by a preponderance of the evidence that Kiss is prior art to the

'115 patent under 35 U.S.C. § 102(e) because Kiss is entitled to the benefit of priority to the filing date of its provisional application.

F. Relevant Principles of Law

To prevail in challenging Patent Owner's claims, Petitioner must demonstrate by a preponderance of the evidence that the claims are unpatentable. 35 U.S.C. § 316(e); 37 C.F.R. § 42.1(d). "In an [inter partes review], the petitioner has the burden from the onset to show with particularity why the patent it challenges is unpatentable." *Harmonic Inc. v. Avid Tech., Inc.*, 815 F.3d 1356, 1363 (Fed. Cir. 2016) (citing 35 U.S.C. § 312(a)(3) (requiring inter partes review petitions to identify "with particularity . . . the evidence that supports the grounds for the challenge to each claim")). This burden never shifts to Patent Owner. *See Dynamic Drinkware, LLC v. Nat'l Graphics, Inc.*, 800 F.3d 1375, 1378 (Fed. Cir. 2015) (citing *Tech. Licensing Corp. v. Videotek, Inc.*, 545 F.3d 1316, 1326–27 (Fed. Cir. 2008)) (discussing the burden of proof in *inter partes* review).

A claim is unpatentable under 35 U.S.C. § 103(a) if the differences between the claimed subject matter and the prior art are such that the subject matter, as a whole, would have been obvious at the time the invention was made to a person having ordinary skill in the art to which the subject matter pertains. *KSR Int'l Co. v. Teleflex Inc.*, 550 U.S. 398, 406 (2007). The question of obviousness is resolved on the basis of underlying factual determinations, including: (1) the scope and content of the prior art; (2) any differences between the claimed subject matter and the prior art; (3) the level of skill in the art; and (4) where in evidence, so-called secondary considerations. *Graham v. John Deere Co.*, 383 U.S. 1, 17–18 (1966).

Petitioner cannot satisfy its burden of proving obviousness by employing "mere conclusory statements." *In re Magnum Oil Tools Int'l, Ltd.*, 829 F.3d 1364, 1380 (Fed. Cir. 2016). We analyze Petitioner's asserted grounds based on obviousness with the principles identified above in mind.

G. Objective Indicia of Nonobviousness

Before determining whether a claim is obvious in light of the prior art, we consider any relevant evidence of secondary considerations of non-obviousness. *See Graham*, 383 U.S. at 17. Notwithstanding what the teachings of the prior art would have suggested to one of ordinary skill in the art at the time of the invention, the totality of the evidence submitted, including objective evidence of non-obviousness, may lead to a conclusion that the challenged claims would not have been obvious to one of ordinary skill. *In re Piasecki*, 745 F.2d 1468, 1471–72 (Fed. Cir. 1984). Patent Owner presents evidence of two such considerations: (1) industry praise (PO Resp. 120–141) and (2) long-felt but unresolved need (*id.* at 141–145), both involving the software product called "Siri" from Apple Inc. For the reasons explained below, we determine that Patent Owner's proffered evidence of secondary considerations is not entitled much weight because Patent Owner does not establish a sufficient nexus between the evidence of non-obviousness and the challenged claims of the '115 patent.

"In order to accord substantial weight to secondary considerations in an obviousness analysis, the evidence of secondary considerations must have a nexus to the claims, i.e., there must be a legally and factually sufficient connection between the evidence and the patented invention." *Fox Factory, Inc. v. SRAM, LLC*, 944 F.3d 1366, 1373 (Fed. Cir. 2019) (internal

quotations omitted). For instance, commercial success is relevant if it flows from the merits of the claimed invention. *Sjolund v. Musland*, 847 F.2d 1573, 1582 (Fed. Cir. 1988).

A nexus is presumed when "the patentee shows that the asserted objective evidence is tied to a specific product and that product 'embodies the claimed features, and is coextensive with them." *Id.* (quoting *Polaris Indus., Inc. v. Arctic Cat, Inc.*, 882 F.3d 1056, 1072 (Fed. Cir. 2018)). If the product is not coextensive with the claims at issue—for example, if the patented invention is only a component of the product—the patentee is not entitled to a presumption of nexus. *See id.* (citing *Demaco Corp. v. F. Von Langsdorff Licensing Ltd.*, 851 F.2d 1387, 1392 (Fed. Cir. 1988)). The burden of showing nexus is on Patent Owner. *See In re Huang*, 100 F.3d 135, 139–40 (Fed. Cir. 1996).

Patent Owner contends that objective indicia of nonobviousness confirm the nonobviousness of the '115 patent. PO Resp. 119–145. Patent Owner argues that industry praise for a software application known as "Siri," "which was first made available for download to iPhone users on Apple, Inc.'s App Store on February 4, 2010" (*id.* at 121), "bears a nexus to the claims of the '156 Patent" (*id.* at 141). Patent Owner argues that industry praise for the "personal context awareness and service delegation 'technical components' of the Siri application are made possible by the [] claim limitations of independent claim 1 of the '115 Patent." *Id.* at 136.

¹⁸ Although Patent Owner refers to the '156 Patent here, we assume this is a mistake and that Patent Owner actually meant to refer to the patent at issue in this proceeding, the '115 patent.

Patent Owner asserts that "[t]he '115 Patent was based on SRI International's development of version 2 of the Open Agent Architecture ('OAA')." *Id.* at 135 (citing Ex. 2032; Ex. 1001). For support, Patent Owner relies on Exhibit 2054, an SRI web page, which states, "SRI developed OAA® software, which is designed with intelligent 'agents' that track human interactions and work processes to streamline electronic and computer interchange." *Id.* (quoting Ex. 2054). Patent Owner further asserts that "[a]fter version 2 of OAA was developed, SRI International spun out Siri, Inc. as an SRI venture, where the Siri application was created based on an OAA groundwork." *Id.* (quoting Ex. 2054 ("OAA laid the groundwork for the DARPA-funded CALO project, from which Siri, the first virtual personal assistant, was born. Siri was spun out into an SRI venture that Apple acquired from SRI."). Apple Inc. apparently acquired Siri, Inc. in April 2010, approximately two months after the Siri application's initial release. 19 *Id.* at 10, 121, 135.

Patent Owner asserts that "Petitioner proposed a combination of *Kiss* with *FIPA97*, which relies on *FIPA97* as teaching a common communications and protocol language that is combined with *Kiss*'s teachings of electronic agents and their general functions and operations." PO Resp. 134 (citing Paper 12, 45). Patent Owner argues a "nexus between the evidence of industry praise of the Siri application [] and the Challenged Claims can be shown if the industry praise has a nexus to the combination of these (allegedly) prior art features, *i.e.*, the teachings of electronic agents and

¹⁹ We note for the record that the filing date for the '115 patent is Jan. 5, 1999, approximately ten years prior to the Siri application's initial release.

their general functions and operations in *Kiss* and the common communications protocol and language of *FIPA97*." *Id.* Patent Owner argues that its "evidence of industry praise [] satisfies the nexus requirement, as it shows praise for the Siri application's integration of personal context awareness into a service-delegating virtual personal assistant." *Id.* at 136; *see also id.* at 122–133. Patent Owner also argues that "industry journalists recognized that the Siri application filled an unmet need for a true virtual personal assistant." *Id.* at 141; *see also id.* at 141–145.

To establish a nexus between claim 1 of the '115 patent and the Siri application, Patent Owner provides the following chart. *Id.* at 136–138. Patent Owner relies, in significant part, on the opinion of its declarant, Dr. Medvidovic, to establish a nexus between the Siri application and the claims of the '115 patent. *See* Ex. 2032 ¶¶ 205–229, App. A, 1–32.

Siri's Description of Technology	Claim 1 of the '115 Patent
Feature	
Personal Context Awareness	"registering a description of each
A virtual assistant gives different	active client agent's functional
answers depending on individual	capabilities as corresponding registered
preferences and personal context	functional capabilities, using an
(place, time, history), and if you give	expandable, platform-independent,
it permission, learns more about you	inter-agent language, wherein the inter-
so that it can shorten your time-to-	agent language includes:
task. Information you teach Siri in one	a layer of conversational protocol
domain (e.g. movies) is applied	defined by event types and parameter
automatically to opportunities rising	lists associated with one or more of the
from other domains. Any personal	

information you provide Siri is stored in a highly secure, PCI-compliant colocation center, and used only with your explicit permission to accelerate your task completion.

a content layer comprising one or more of goals, triggers and data elements associated with the events;"

events, wherein the parameter lists

further refine the one or more events:

Service Delegation

An assistant can reason about what specific set of resources or services would best be combined to help you accomplish a particular task. Siri's patented service delegation algorithms combine numerous attributes about each service provider, including quality scores, fine-grained ratings for specific capabilities, speed measures, and geographic constraints, to plan and execute an optimized strategy for handling your request. Live data is pulled fresh from source sites and world-changing actions are handled in a transaction-safe manner. For example, in a restaurant selection task, Siri integrates information from many sources (local business directories, geospatial databases, restaurant guides, restaurant review sources,

"A computer-implemented method for communication and cooperative task completion among a plurality of distributed electronic agents, comprising the acts of:

receiving a request for service as a base goal in the inter-agent language, in the form of an arbitrary complex goal expression;

dynamically interpreting the arbitrarily complex goal expression, said act of interpreting further comprising:

generating one or more sub-goals expressed in the inter-agent language;

constructing a goal satisfaction plan wherein the goal satisfaction plan includes:

a suitable delegation of sub-goal requests to best complete the requested menu sites, online reservation services and the user's own favorites) to show results that meet the user's natural language request. service request-by using reasoning that includes one or more of domainindependent coordination strategies, domain-specific reasoning, and application-specific reasoning comprising rules and learning algorithms; and

dispatching each of the sub-goals to a selected client agent for performance, based on a match between the sub-goal being dispatched and the registered functional capabilities of the selected client agent."

Patent Owner argues that "the Siri application's integration of personal context awareness is made possible because of the claimed interagent language limitations." PO Resp. 138 (citing Ex. 2032 ¶ 222). Patent Owner explains that "[b]y having a layer of conversational protocol that has parameter lists, the '115 Patent describes how agents can then use the parameters in the parameter lists to provide feedback or advice to agents who directly, or indirectly through the facilitating agent, receive the service request." Resp. 138. For example, Patent Owner explains that a "requesting agent can utilize such a parameter to provide context on a user's preference to the facilitator agent and/or the tasking agents. *Id.* at 139 (citing Ex. 2032 ¶ 224). Patent Owner argues that "[t]his same functionality of being able to include individual preferences, for example, was described by Siri, Inc. as representing personal context awareness." *Id.* at 140 (citing Ex. 2040, 2).

Patent Owner also argues that:

the Siri application's service delegation corresponds to the claimed dynamic interpretation limitations. Siri, Inc. described the service delegation feature of the Siri application as including "an assistant [that] can reason about what specific set of resources or services would best be combined to help you accomplish a particular task." This is precisely what is claimed in the dynamic interpretation limitations, e.g., "constructing a goal satisfaction plan . . . [including] a suitable delegation of subgoal requests to best complete the requested service request-by using reasoning."

Id. (citing Ex. 2032 ¶ 221).

Petitioner argues that Patent Owner's "secondary considerations position rests primarily on an unsubstantiated, conclusory opinion that certain aspects of the '115 Patent are embodied in the Apple product 'Siri." Pet. Reply 82. Petitioner argues that as "Dr. Medvidovic conceded, the evidence he relied on is 'circumstantial,' or a 'suggestion." *Id.* (citing Ex. 1129, 147:12–15). Petitioner argues that Dr. Medvidovic "never reviewed the Siri source code, (Ex. 1129, 146:20–147:6), and indeed never even asked to review that source code (Ex. 1129, 147:22–148:9)."

Pet. Reply 82–83. Petitioner argues,

[t]he failure to review the code is fatal, because [Dr. Medvidovic] further testified that an "agent"—an element in every claim—is a "piece of functionality that is capable of performing certain tasks that is embodied in at least for a software engineer a clearly identifiable body of code," and that to distinguish an "agent" from any other software he "would have to look inside the code."

Id. at 83 (quoting Ex. 1129, 9:14–11:8).

Petitioner faults Patent Owner for not "not seek[ing] that code through a motion for additional discovery or other means, nor did [Petitioner] seek

any other objective evidence (such as specifications) to support its assertions." Pet. Reply 83. Petitioner also faults Patent Owner for not seeking the testimony of Mr. Adam Cheyer, one of the named co-inventor's on the '115 patent and a co-founder of Siri, Inc., on this topic, even though Mr. Cheyer's testimony was apparently obtained in a related proceeding. *Id.* at 83–84 (citing Ex. 2034, 58:15–63:16; Ex. 1127); *see also id.* at 121. During the Oral Hearing in this proceeding, counsel for Patent Owner was asked about this potential source of evidence:

- 12 JUDGE TROCK: Counsel, this is Judge Trock 13 again.
- 14 Do you have any evidence from Mr. Cheyer
- 15 that this Siri version that you're discussing right
- 16 now incorporated the claim limitations of the '115
- 17 patent?
- 18 MS. ABDULLAH: Your Honor, we do not have
- 19 any direct evidence from Mr. Cheyer. And the reason
- 20 is because he was never deposed in this
- 21 proceeding and he is also not a consultant or
- 22 anybody that's working with IPA at the moment. I
- 23 know --
- 24 JUDGE TROCK: Wasn't he deposed -- sorry.
- 25 Wasn't he deposed in the Google proceeding?
- 26 MS. ABDULLAH: He was, your Honor. And that
- 1 was pursuant to a subpoena that we had to get
- 2 permission to serve from the Board because he

- 3 refused to simply cooperate with us voluntarily.
- 4 JUDGE TROCK: Was there a reason why you
- 5 didn't approach the Board in this case for a
- 6 subpoena?
- 7 MS. ABDULLAH: Your Honor, because we don't
- 8 believe that his testimony is as probative as the
- 9 expert testimony that we presented drawing the
- 10 direct connection as well as the actual industry
- 11 praise and long-felt need evidence that we --
- 12 JUDGE TROCK: But wouldn't he be a witness
- 13 with personal knowledge of whether or not that
- 14 original Siri version incorporated the claim
- 15 limitations of the '115 patent?
- 16 MS. ABDULLAH: Your Honor, respectfully, I
- 17 believe that that was not -- that would not be a
- 18 question of personal knowledge but rather of expert
- 19 testimony. And also, your Honor, I would note that
- 20 I don't believe that we would have the requisite
- 21 showing under the Garmin factors that he would be
- 22 able to testify to those aspects.
- 23 JUDGE TROCK: But he is the inventor, right?
- 24 You've told us that.
- 25 MS. ABDULLAH: Yes, your Honor, he is the
- 26 inventor.
- 1 TROCK: All right. So he might be a

- 2 person -- a witness with personal knowledge; isn't
- 3 that right?
- 4 MS. ABDULLAH: Absolutely. And were this a
- 5 district court case, you know, I'm sure we would
- 6 have pursued his deposition. I'm sure Microsoft
- 7 would have as well. But given the high burden for
- 8 us to obtain additional discovery, your Honor, we
- 9 determined that the probative value of his testimony
- 10 was not such that it would meet the Garmin factors
- 11 here.
- 12 JUDGE TROCK: But you did pursue that in the
- 13 Google case though?
- 14 MS. ABDULLAH: Your Honor, the Google case
- 15 was a different issue. The question there had to do
- 16 with authorship of a prior art reference that
- 17 Mr. Cheyer was an author of. And it had to do with
- 18 whether that could be considered the work of another
- 19 versus the inventor. So inventorship was front and
- 20 center in the Google proceedings where it is not
- 21 here. Here this is a 103 analysis for which, you
- 22 know, obviously I can't pretend to say what the
- 23 Board would have done. But I think the evidence
- 24 that we have, that we have been able to present
- 25 demonstrates that link better than Mr. Cheyer's
- 26 testimony would be able to.

Tr. 114:12–116:26.

Petitioner also points to evidence that potentially undermines a nexus between the challenged claims of the '115 patent and the Siri application. For example, Petitioner argues that "Adam Cheyer testified that 'Siri' did not implement the agent registry functionality described in the '115 Patent." Pet. Reply 84 (citing Ex. 2034, 46:12-47:5). Likewise, Petitioner argues, "an email authored by Adam Cheyer indicates that as of August 2005 OAAv2 had only been adapted to run on 'Windows CE' mobile devices—there is no mention of iOS, Apple, or any other mobile platforms." *Id*. (citing Ex. 1137).

Petitioner also argues that Patent Owner's "evidence credits the CALO project with being the progenitor of the ideas that led to Siri—not any version of OAA." Pet. Reply 84 (citing Ex. 2042, 1 ("Siri traces its origins to a military-funded artificial-intelligence project called CALO"); Ex. 2044, 1; Ex. 2047, 2; Ex. 2054, 1; Ex. 2001, 2). "Nor is there any evidence in the record," Petitioner argues, "that OAA was ultimately utilized in SRI's CALO project other than that the original OAA (*i.e.*, the version first created in 1994 prior to the '115 Patent work) laid 'groundwork' for what would ultimately become CALO." *Id.* (citing Ex. 2054). Petitioner argues that "substantial evidence shows that a later agent system named "SPARK" (SRI Procedural Agent Realization Kit) was used as the basis of CALO," but that Patent Owner "ignores this intervening SPARK system and makes no attempt to show it practices the claims, nor does it meaningfully address the CALO project." *Id.* at 85 (citing Ex. 1136 §7).

Petitioner argues that Patent Owner "failed to provide evidence 'that the industry praised a claimed invention or a product that embodies the patent claims." Pet. Reply 85 (quoting *Apple Inc. v. Samsung Elecs. Co.*, 839 F.3d 1034, 1053 (Fed. Cir. 2016) (emphasis omitted). In particular, Petitioner argues, Patent Owner "failed to 'establish that the evidence relied upon traces its basis to a novel element in the claim and not to something in the prior art." *Id.* (quoting *BioMarin Pharm. Inc. v. Genzyme Therapeutic Prods. LP*, IPR2013-00537, Paper 79, 22 (PTAB Feb. 23, 2015) (emphasis omitted).

"Furthermore," Petitioner argues, Patent Owner "has provided no showing that the Siri App 'embodies the claimed features and is coextensive with them,' and accordingly can gain no presumption from any Siri success." Pet. Reply 85–86 (quoting *Polaris Indus., Inc. v. Arctic Cat, Inc.*, 882 F.3d 1056, 1072 (Fed. Cir. 2018) (emphasis omitted). "Even assuming portions of Siri embodied the claims," Petitioner argues, "the record is undisputed that Siri provides significant functionality well beyond anything covered by the claims—voice recognition, for example." *Id.* at 86.

Petitioner further argues "the table provided by [Patent Owner] merely lists unrelated claim language and 'examples' of 'personal context awareness' with no further analysis." Pet. Reply 87. "For example," Petitioner argues, Patent Owner "provides no explanation about how the alleged 'Personal Context Awareness' feature in Siri practices 'a layer of conversational protocol." *Id.* Moreover, Petitioner argues, "despite claiming that 'the Siri application's integration of personal context awareness is made possible because of the claimed inter-agent language

limitations,' [Patent Owner] provides no evidence. [Patent Owner] cites only to a single paragraph of the Medvidovic Declaration, which is itself bare *ipse dixit* and further undermined by his failure to examine the source code or any other descriptive technical materials for Siri." *Id.* at 88 (citing Ex. 2032 ¶ 222).

Petitioner argues that Patent Owner's evidence that Siri embodies the ICL limitations of claim 1 "is no better." Pet. Reply 88 (citing PO Resp.

140). Petitioner argues Patent Owner:

does not discuss the actual limitations of claim 1 nor explain how giving different answers depending on individual preferences embodies the claims. For example, [Patent Owner] does not even attempt to articulate how Siri has a conversational layer, or event types, or how those event types are refined by parameters. Nor does [Patent Owner] address how Siri embodies the claimed agent registry limitation, particularly when the testimony of the inventor Mr. Cheyer indicates that it does not.

Id. (citing Ex. 2034, 46:12–47:5).

Petitioner argues that Dr. Medvidovic's testimony should be given no weight. Pet. Reply 89. Petitioner argues that:

Dr. Medvidovic admitted that he would be unable to determine whether a piece of software was an "agent" without examining the source code for that software, and further admitted that he had not reviewed the Siri source code nor ever asked to review such source code. Ex. 1129, 11:9–16. Yet, Dr. Medvidovic opines at length that Siri must embody the claims of the '115 Patent because, for example, "personal context awareness and service delegations are made possible by the functionality claimed in the independent claims of the '115 Patent"—an opinion without any evidentiary support. Ex. 2032 ¶ 220. Indeed, by Dr. Medvidovic's own admission, he lacks the necessary personal knowledge to opine on the architecture of Siri.

Id.

In its Sur-reply, Patent Owner argues that there is "no prohibition against the use of circumstantial evidence in IPR proceedings." PO Sur-reply 66. Patent Owner argues, "Dr. Medvidovic provided unrebutted testimony, including a lengthy appendix, supported by this evidence, which must be credited. *Id.* at 68 (citing Ex. 2032, §§ 205-229, App. A). Patent Owner also points out that "Dr. Medvidovic testified that looking at the code is not the exclusive means of identifying an agent – other available information can be utilized." *Id.* at 69; see Ex. 1129, 10:14–11:16. Moreover, Patent Owner argues, "under the *Garmin* factors, Patent Owner was unable to seek Apple's highly confidential source code in connection with these proceedings." Id. at 70 (citing Garmin Int'l, Inc. v. Cuozzo Speed Techs., LLC, IPR2012-00001, Paper 26 at 6–7 (PTAB Mar. 5, 2013). With respect to Mr. Cheyer's testimony, Patent Owner explains that "Patent Owner was only able to depose Mr. Cheyer after the Board granted Patent Owner's motion under 37 C.F.R. § 42.52(a) for leave to serve a subpoena to compel Mr. Cheyer to testify" in a related proceeding. *Id.* at 71.

We agree with Petitioner that Patent Owner does not to provide persuasive evidence that the Siri application is reasonably commensurate with the scope of the challenged claims. Patent Owner's cited evidence attempting to tie the Siri application to the limitations of claim 1 relies substantially on the testimony of Dr. Medvidovic (Ex. 2032) and a web.archive.org Internet page (Ex. 2040) Patent Owner identifies as "Siri, Inc., Technology – "About Siri – Your Virtual Personal Assistant." *See* PO Resp. 136–140 (citing Ex. 2032 ¶¶ 216–222, 224; Ex. 2040).

We note at the outset that Dr. Medvidovic's opinion does not rely on an examination of the Siri application's source code. During his deposition, Dr. Medvidovic testified as follows:

- [Q] Let me ask you, have you ever reviewed the Siri source code?
- [A] I have not.
- [Q] So you don't know the details of how Siri is implemented?
- [A] Not beyond what I'm stating in the declaration as my sources of information that I'm drawing on.

Ex. 1129, 146:10–17. This is significant because Dr. Medvidovic testified at his deposition that an "agent"—an element in every claim—is a "piece of functionality that is capable of performing certain tasks that is embodied in at least for a software engineer a clearly identifiable body of code," and that "if there is no accompanying specification language, then we would have to look inside the code [to determine] what kinds of facilities the agent provides." *See* Ex. 1129, 9:13–11:8). As far as we can determine, neither party has provided "accompanying specification language" for the Siri application source code. Instead, Dr. Medvidovic testified, the evidence he relied upon to form his opinion is "circumstantial," or a "suggestion." *See* Ex. 1129, 147:7–148:9.

In Section XI.B of his Declaration, "Nexus of Industry Praise to the Independent Claims of the '115 Patent," Dr. Medvidovic cites to Exhibit 2040 as support for his understanding of how the Siri application works. *See e.g.*, Ex. 2032 ¶¶ 215–216, 218, 226, 229.

Exhibit 2040 describes "Siri" as:

the first mainstream consumer application of a Virtual Personal Assistant. Siri is an intelligent software agent designed to have a back-and-forth conversational interaction with you as it helps you get tasks done. The three main technical components behind Siri's differentiation correspond to the essential qualities of an assistant: a conversational interface, personal context awareness and service delegation.

Ex. 2040, 1.

In his Declaration, Dr. Medvidovic discusses the "personal context awareness" and "service delegation" aspects of Siri in some detail (see, e.g., Ex. 2032 ¶¶ 216–220, 222–229). Dr. Medvidovic, however, only mentions Siri's "conversational interface" in passing, even though Exhibit 2040 describes Siri as an intelligent software agent "designed to have a back-and-forth conversational interaction with you as it helps you get tasks done," and lists Siri's "conversational interface" as the first of Siri's "three main technical components." *See* Ex. 2032 ¶ 215; Ex. 2040, 1.

In his Declaration, Dr. Medvidovic attempts to link the Siri application and the limitations of the independent claims of the '115 patent. See Ex. 2032 ¶¶ 205–229, App. A, 1–32. Dr. Medvidovic does this by first separating the limitations of independent claims 1 and 29 into two categories, an "Inter-agent Communication Layer" (ICL) and "Service Request Planning and Execution." See Ex. 2032, 70–71. Dr. Medvidovic then states that "[i]t is my opinion that the Siri application's integration of personal context awareness is made possible because of the claimed ICL." Id. ¶ 222. Dr. Medvidovic explains that "within the conversational protocol layer of the ICL, there are further claimed "parameter lists" that may "further refine the one or more events." Id. ¶ 223. Dr. Medvidovic concludes that "[t]he claimed parameter lists are what allows the Siri application to provide 'different answers' depending on the context, as they

are able to refine the meaning of a service request." *Id.* \P 226.

Dr. Medvidovic, however, provides no citation or further support for this conclusion nor does he point to any evidence to show that the Siri application utilizes the claimed parameter lists. *See id*.

In his Declaration, Dr. Medvidovic also states that "[i]t is further my opinion that the Siri application's integration of service delegation is made possible because of the claimed service request planning and execution claim limitations." *Id.* ¶ 227. Dr. Medvidovic attempts to support this opinion by comparing the language of claim 1 relating to a goal satisfaction plan that includes "a suitable <u>delegation</u> of sub-goal requests to <u>best complete</u> the requested service request by using <u>reasoning</u>" to language used in Exhibit 2040 to describe the service delegation feature of the Siri application, "Service <u>Delegation</u>. An assistant can <u>reason</u> about what specific sets of resources of <u>services</u> would <u>best</u> be combined to help you <u>accomplish</u> a particular task." *See id.* ¶ 229; Ex. 2040, 2.

In our view, such a comparison is speculative at best to demonstrate that the Siri application utilizes claim 1's "service request planning and execution limitations," as Dr. Medvidovic opines. The limitations of claim 1 that Dr. Medvidovic puts in this category include:

A computer-implemented method for communication and cooperative task completion among a plurality of distributed electronic agents, comprising the acts of:

registering a description of each active client agent's functional capabilities as corresponding registered functional capabilities, receiving a request for service as a base goal in the inter-agent language, in the form of an arbitrary complex goal expression;

dynamically interpreting the arbitrarily complex goal expression, said act of interpreting further comprising:

generating one or more sub-goals expressed in the inter-agent language;

constructing a goal satisfaction plan wherein the goal satisfaction plan includes:

a suitable delegation of sub-goal requests to best complete the requested service request-by using reasoning that includes one or more of domain-independent coordination strategies, domain-specific reasoning, and application-specific reasoning comprising rules and learning algorithms; and

dispatching each of the sub-goals to a selected client agent for performance, based on a match between the sub-goal being dispatched and the registered functional capabilities of the selected client agent.

Ex. 2032, 70. Yet, Dr. Medvidovic does not persuasively show that the Siri application "register[s] a description of each active client agent's functional capabilities," "receiv[es] a request for service . . . in the form of an arbitrary complex goal expression," "generat[es] one or more sub-goals expressed in the inter-agent language," "construct[s] a goal satisfaction plan," or "dispatch[es] each of the sub-goals to a selected client agent . . . based on a match between the sub-goal . . . and the registered functional capabilities of the selected client agent." *See id.* ¶¶ 227–229.

In fact, as Petitioner points out, there is evidence of record that the Siri application did not utilize the claimed agent registry functionality as Dr. Medvidovic opines. According to Petitioner, Mr. Cheyer, the named coinventor on the '115 patent and the co-founder of Siri, Inc., "testified that 'Siri' did not implement the agent registry functionality described in the

'115 Patent." Pet. Reply 84 (citing Ex. 2034, 46:12-47:5). At a deposition in a related proceeding, Mr. Cheyer testified as follows:

- [Q] So you say "it's likely." Are there features in OAA that you think have yet to be implemented in systems today?
- [A] Yes.
- [Q] Could you describe those?
- [A] Every system is different, but one feature of the original OAA 1 demo was that independent agents -- today we would call them more like web services -- could connect dynamically to the -- to the platform, register new capabilities with that platform, and without knowing about other services on the network, explicitly, the user could make a single request that would be -- that would involve a collaboration, and sometimes competition, among those network ecosystem of services. And so one user request would be delegated to many services which were independently developed, and none of those services knew precisely about each other. And that when I look at Siri and Google Assistant and Alexa and Bixby, that is not a capability that I have seen in any of the services today.

Ex. 2034, 45:25–46:2, 46:12–47:5.

Petitioner also points out, and we agree, that there is evidence of record that credits the CALO project with being the progenitor of the ideas that led to Siri. *See*, *e.g.*, Ex. 2042, 1 ("Siri traces its origins to a military-funded artificial-intelligence project called CALO"); *see also* Ex. 2044, 1; Ex. 2047, 2; Ex. 2054, 1; Ex. 2001, 2). Opus Research explains that "Siri is

set apart because it applies the depth of knowledge its founders and software specialists have built at SRI and elsewhere in creating a "cognitive assistant that learns and organizes" (CALO). Ex. 2044, 1. Petitioner points out that there is also evidence of record that indicates a later agent system named "SPARK" (SRI Procedural Agent Realization Kit) was used as the basis of CALO. *See* Ex. 1136 § 7. The SPARK-based Personal Assistant is described as follows:

SPARK provides general-purpose agent technology for a range of domains that require reactive task execution. To date, the driving application for SPARK has been the development of an intelligent personal assistant for a high-level knowledge worker. This assistant, called CALO, will be able to perform routine tasks on behalf of its user (e.g., arrange meetings, complete online forms, file email), as well as undertake open-ended processes (e.g., purchasing a computer online), and anticipate future needs of its user.

Ex. 1136 § 7. This evidence, however, does not appear to have been considered or addressed by Dr. Medvidovic. *See* Ex. 2032 ¶¶ 205–229.

We are mindful that objective evidence of nonobviousness need only be "reasonably commensurate with the scope of the claims." *Rambus Inc. v. Rea*, 731 F.3d 1248, 1257 (Fed. Cir. 2013). We also bear in mind that "[w]hen the thing that is commercially successful is not coextensive with the patented invention—for example, if the patented invention is only a component of a commercially successful machine or process—the patentee must show prima facie a legally sufficient relationship between that which is patented and that which is sold." *Demaco Corp.*, 851 F.2d at 1392.

Here, Patent Owner relies on industry praise for the Siri application and evidence of an unmet need to establish a nexus between the Siri application and the claimed invention. However, we are concerned that Patent Owner and its declarant, Dr. Medvidovic, pay little attention to one of the "three main technical components behind Siri's differentiation," the "conversational interface," when evaluating the basis for the proffered "industry praise." *See* Ex. 2040, 1.

Petitioner argues, and we agree, that "[e]ven assuming portions of Siri embodied the claims, the record is undisputed that Siri provides significant functionality well beyond anything covered by the claims—voice recognition, for example." Pet. Reply 86. The impact of Siri's "conversational interface" on Siri's reviewers is notable. For example, MIT Technology Review explains that with Siri, "[u]sers can type or speak commands in casual sentences, and the software deciphers their intent from the context." Ex. 2042, 1. Opus Research reports that "I've had [Siri] for a couple of days and here are my initial reactions. My overall experience has been quite positive. The quality of voice recognition (powered by the same 'engine' that supports Dragon Dictation and Dragon Search on the iPhone) is quite good." Ex. 2044, 1. Fast Company. Com reports, "Siri, which launches today as a free iPhone app, is a virtual personal assistant that amazingly resembles . . . an actual personal assistant. It understands plain English commands, which can be spoken or typed (e.g. 'Get me tickets to that Matt Damon movie')." Ex. 2045, 2.

Further, The Chronicle of Higher Education explains that Siri "takes a multi-step search process and turns it into one, simple, voice-driven request." Ex. 2046, 2. USA Today reported that "[t]here were occasional mistakes in speech recognition, but the overall accuracy [of Siri] was

impressive, at least when I spoke slowly and clearly in a quiet environment." Ex. 2047, 2. Spatial Computing Strategy & Research reports that, with Siri, "You ask it to do stuff like 'find me a pizza place near me' or 'tell me the weather in Chicago this weekend,' [w]ith your voice or by typing commands." Ex. 2048, 2. Search Engine Land explains that Siri is "intended to enable you to do more with your voice and your phone in fewer clicks or moves." "[O]ne can speak to Siri in a more natural way. Rather than speaking like a robot and saying 'Open Table' to minimize error, you can say something more elaborate and 'conversational' such as, 'I'd like a reservation tonight around 7:30 at Le Cheval." Ex. 2050.

Each of these reported examples indicate that the reviews Patent Owner relies upon to demonstrate "industry praise" for the Siri application considered Siri's conversational interface to be a significant part of its functionality. Patent Owner and Dr. Medvidovic, however, give Siri's "conversational interface" little, if any, consideration when evaluating the reasons for the "industry praise" used to try and establish a nexus between the Siri application and the claimed invention. *See, e.g.*, Ex. 2032 ¶ 215. Even if the Siri application incorporated some of the functionality of the claimed invention, the evidence of record relied on by Patent Owner shows that the Siri application, and its attendant "industry praise," is not reasonably commensurate with the scope of the claimed invention. Patent Owner does not argue that the Siri application's "conversational interface" is claimed by the '115 patent.

For these reasons and based on the complete record, we determine that Patent Owner's proffered evidence of industry praise for the Siri application and evidence of a long felt unresolved need does not establish a sufficient nexus between the Siri application and the challenged claims of the '115 patent. In the absence of an established nexus with the claimed invention, secondary consideration factors are not entitled to much, if any, weight and generally have little bearing on the legal issue of obviousness. *See In re Vamco Mach. & Tool, Inc.*, 752 F.2d 1564, 1577 (Fed. Cir. 1985).

H. Obviousness over Kiss and FIPA97

In this asserted ground of obviousness, Petitioner contends that claims 1, 4–10, 15, 29–32, and 38 of the '115 patent are unpatentable under 35 U.S.C. § 103(a) as obvious over the combination of Kiss and FIPA97. Pet. 32–75.

In its proposed combination of Kiss and FIPA97; Reason to Combine
In its proposed combination of Kiss with FIPA97, Petitioner relies on
Kiss as teaching electronic agents and their general functions and operations,
including agent collaboration, agent registry, and inter-agent messaging.
Pet. 28. Petitioner acknowledges, however, Kiss does not disclose an interagent communication language and relies on FIPA97 to teach a common
communications protocol and language (FIPA ACL), which is combined
with the teachings of Kiss to provide a communication language for interagent communication between the agents of Kiss. *Id.* Petitioner explains
that "[FIPA97's] techniques are used to implement the functionality
described in Kiss, including facilitating agent collaboration, agent registry,
and inter-agent messaging." *Id.* (citing Ex. 1005, 3:32–36, 3:67–4:1, 6:67–
7:1). Petitioner asserts that "[w]here the two systems disclose analogous

functionality, such as facilitating cooperation and agent registry, their techniques are combined, as a Skilled Artisan would understand that to be an efficient and common sense way to implement the combined system in order to obtain the benefits of both, and therefore be motivated to do so." *Id.* (citing Ex. 1003 ¶¶ 217–219).

Petitioner argues the proposed combination of Kiss and FIPA97 would have been obvious for several reasons. Petitioner argues Kiss, FIPA97, and the '115 patent are analogous art, because "each is directed to the same field of endeavor, *i.e.*, distributed computing environments generally and architectures for communication and cooperation among distributed electronic agents specifically." Pet. 28–29 (citing *e.g.*, Ex. 1001, 1:25–29; Ex. 1005, Abstract; Ex. 1007, Foreword, 1; Ex. 1003 ¶ 220). Petitioner also argues, "FIPA97 and Kiss are reasonably pertinent to the problem addressed by the '115 Patent—*e.g.*, the need for 'flexible, fault-tolerant, distributed problem solving' using 'agent-based technologies." Pet. 29 (citing Ex. 1001, 4:34–40; Ex. 1005, 2:33–40; Ex. 1007, 1; Ex. 1003 ¶ 221).

Petitioner argues,

[i]t would have been obvious to make this combination because to do so would have been the arrangement of old elements (*i.e.*, the functionality of <u>FIPA97</u>, and the system of <u>Kiss</u>) with each performing the same function it had been known to perform (communication between distributed agents (<u>FIPA97v1</u>)); cooperative task competition and problem solving (<u>Kiss</u>)) and yielding no more than what one would expect from such an arrangement (a system of distributed agents, able to communicate to conduct cooperative task completion and problem solving).

Pet. 29 (citing Ex. 1020, 2; Ex. 1046, 50; Ex. 1003 ¶ 222).

Petitioner also argues it

would have been obvious because a Skilled Artisan would have known that agents, such as in <u>Kiss</u>, must use a common communications protocol, i.e., an inter-agent communication language, and related management functionality, and therefore would have been motivated to consider and employ one of the available inter-agent communications languages and its related functionality, and because doing so would have been a convenient and efficient way to facilitate effective communication between agents.

Pet. 29–30 (citing Ex. 1003 ¶ 223; Ex. 1020, 2; Ex. 1046, 50).

Petitioner further argues,

[a] Skilled Artisan would also have been motivated based on earlier descriptions of KQML's similar use of an inter-agent communication language, their disclosure that '[t]here are several levels at which agent-based systems must agree, at least in their interfaces, in order to successfully interoperate: Transport ... Language ... Policy ... Architecture,' and their disclosure of the necessity of a robust inter-agent communication language in a system like Kiss.

Pet. 30 (citing Ex. 1016, Abstract, 4, 29, 30; Ex. 1006, 7; Ex. 1007, 40–42; Ex. 1005, Abstract; Ex. 1003 ¶¶ 224–226).

Petitioner argues it "would also have been obvious to try this combination because the necessity of a common inter-agent communication language was a known design need in a system such as <u>Kiss</u>, and there were only a small number of identified, predictable solutions to that need, such as FIPA ACL." Pet. 30 (citing Ex. 1020, 2; Ex. 1046, 50; Ex. 1035, 1; Ex. 1003 ¶ 227).

Petitioner also argues,

[a] Skilled Artisan would have been further motivated to make the combination because of the known advantages of <u>FIPA97</u>, including that it specifies, "key agents necessary for the management of an agent system, the ontology necessary for the interaction between systems, and it defines also the transport level of the protocols."

Id. at 30–31 (citing Ex. 1035, 1; Ex. 1003 ¶ 229).

Further, Petitioner argues:

a Skilled Artisan would have been motivated to make the combination because <u>FIPA97</u> represented a substantial attempt to formulate an industry standard designed to encourage interoperability and uniformity amongst agent systems. A Skilled Artisan would have understood that agent systems that complied with such a standard would be more likely to be interoperable with other systems and would likely have more resources available.

Id. at 31 (citing Ex. 1007, vii; Ex. 1047; Ex. 1003 ¶ 230).

Petitioner argues, "[a] Skilled Artisan would have been further motivated to include the administrative functionality and exemplary practices described in <u>FIPA97</u> with <u>Kiss</u> because the description of such functionality and practices in <u>FIPA97</u> suggests that their use with the FIPA ACL would be advantageous and workable." Pet. 31. Petitioner also argues, "[a] Skilled Artisan would also have been motivated to employ such additional functionality and practices in the combined system in order to obtain the full benefit of using FIPA ACL." *Id.* (citing Ex. 1003 ¶ 231).

Finally, Petitioner argues, "a Skilled Artisan could have made the combination cited above without undue experimentation including because by January 1999 the components parts of this combination were well-known, conventional technology and because others had combined <u>FIPA97v1</u> technology with agent systems." Pet. 31 (citing Ex. 1007; Ex. 1016; Ex. 1030; Ex. 1003 ¶ 228).

Patent Owner asserts that "Petitioner utterly defaults in offering any reason to combine *Kiss* and *FIPA97*." PO Resp. 116. Patent Owner argues that Petitioner's motivation to combine Kiss and FIPA97 suffers from "hindsight bias" and that Petitioner "offers no reason or explanation that a person of skill in the art looking at *Kiss* would be motivated to find a particular language with the characteristics of *FIPA97's* ACL." *Id.* Patent Owner also argues that Petitioner does not "explain what 'efficiencies' a person of ordinary skill in the art would be looking for" and "fails to identify how the combination could be achieved." *Id.* at 116–117.²⁰

In the Reply, Petitioner argues that Patent Owner "ignores the several pages of analysis supported by expert testimony (including citations to evidence in the prior art) articulating the rational underpinning of the combination" of Kiss and FIPA97. Pet. Reply 30 (citing Pet. 28–32). Petitioner argues that "while there was no requirement to show that a Skilled Artisan would search for 'a particular language with the characteristics of FIPA97's ACL," (PO Resp. 116), the Petition does explain that "agents, such as in Kiss, must use a common communications protocol," so a Skilled Artisan "would have been motivated to 'employ one of the available interagent communications languages . . . because doing so would have been a convenient and efficient way to facilitate effective communication between agents." Pet. Reply 30–31 (citing Pet. 29–30; Ex. 1003 ¶ 223).

²

²⁰ We need not address the parties' dispute over the motivation to combine Kiss's meta-agent and FIPA97 directory facilitator (*see*, *e.g.*, PO Resp. 79–85; Pet. Reply 40–46) because whether the combination of Kiss and FIPA97 teaches the claimed "facilitator agent" is not at issue for this Final Written Decision.

Petitioner also argues that Patent Owner's criticism that "Petitioner fails to identify how the combination could be achieved," (PO Resp. 117), is "legally irrelevant" (citing *In re Keller*, 642 F.2d 413, 425 (CCPA 1981), and "also ignores the detailed description in the Petition (supported by Dr. Lieberman) that demonstrates how the combination would work." Pet. Reply 31 (citing Pet. 28–32; Ex. 1003 ¶¶ 217–219; Ex. 1005, Figs. 4–6, 21 (annotated)). Petitioner points out that:

[t]he Petition explains, for example, that <u>FIPA97</u> provides a common communications protocol and language (FIPA ACL) between the agents of <u>Kiss</u>, and also adds its administrative functionality and exemplary practices to the <u>Kiss</u> system, as described with specificity below. These techniques are used to implement the functionality described in <u>Kiss</u>, including facilitating agent collaboration, agent registry, and inter-agent messaging, (Ex. 1005, 3:32–36, 3:67-4:1, 6:67–7:1), as well adding functionality that is disclosed in <u>FIPA97</u>.

Pet. Reply 34.

In its Sur-reply, Patent Owner argues that Petitioner's evidence of a motivation to combine are simply "[p]ages of boilerplate language" or exhibit "ex post reasoning colored by hindsight." PO Sur-reply 58, 62. Patent Owner argues that the FIPA97 and Kiss protocols are "different" and "mutually exclusive" and that "Petitioner offers no argument or evidence relating to how these completely different components would be reconciled." *Id.* at 59–61. Patent Owner argues that FIPA97 "discouraged interoperability between different and incompatible systems." *Id.* at 61.

Patent Owner also argues that "[t]he Board must disregard" portions of Petitioner's Reply, which discuss "a series of four figures from Dr. Lieberman's declaration," "because it constitutes new argument." *Id.* at 63.

Patent Owner argues that "the Petition must contain a 'full statement of the reasons for the relief requested" and "cannot simply incorporate by reference its expert's declaration." *Id.* (citing 37 C.F.R § 42.6(a)(3)).

In identifying a reason that would have prompted a person of ordinary skill in the relevant field to combine the prior art teachings, the Petitioner "must show some articulated reasoning with some rational underpinning to support the legal conclusion of obviousness." *KSR Int'l Co. v. Teleflex Inc.*, 550 U.S. 398, 418 (2007). A reason to combine teachings from the prior art "may be found in explicit or implicit teachings within the references themselves, from the ordinary knowledge of those skilled in the art, or from the nature of the problem to be solved." *WMS Gaming Inc. v. Int'l Game Tech.*, 184 F.3d 1339, 1355 (Fed. Cir. 1999) (*citing In re Rouffet*, 149 F.3d 1350, 1357 (Fed. Cir. 1998)).

Here, Petitioner explains that:

<u>FIPA97</u> provides a common communications protocol and language (FIPA ACL) between the agents of <u>Kiss</u>, and also adds its administrative functionality and exemplary practices to the <u>Kiss</u> system, as described with specificity below. These techniques are used to implement the functionality described in <u>Kiss</u>, including facilitating agent collaboration, agent registry, and inter-agent messaging, Ex. 1005, 3:32–36, 3:67–4:1, 6:67–7:1, as well adding functionality that is disclosed in <u>FIPA97</u>. Where the two systems disclose analogous functionality, such as facilitating cooperation and agent registry, their techniques are combined, as a Skilled Artisan would understand that to be an efficient and common sense way to implement the combined system in order to obtain the benefits of both, and therefore be motivated to do so.

Pet. 28 (citing Ex. 1003 ¶¶ 217–219).

Petitioner provides persuasive evidence that Kiss and FIPA97 are analogous art because "each is directed to the same field of endeavor, *i.e.*, distributed computing environments generally and architectures for communication and cooperation among distributed electronic agents specifically." Pet. 29 (citing Ex. 1001, 1:25–29; Ex. 1005, Abstract; Ex. 1007, Foreword, 1; Ex. 1003 ¶ 220). Petitioner also provides persuasive evidence that FIPA97 and Kiss "are reasonably pertinent to the problem addressed by the 115 Patent—*e.g.*, the need for 'flexible, fault-tolerant, distributed problem solving' using 'agent-based technologies." Pet. 29 (citing Ex. 1001, 4:34–40; Ex. 1005, 2:33–40; Ex. 1007, 1; Ex. 1003 ¶ 221).

Petitioner argues persuasively that

[i]t would have been obvious to make this combination because to do so would have been the arrangement of old elements (*i.e.*, the functionality of <u>FIPA97</u>, and the system of <u>Kiss</u>) with each performing the same function it had been known to perform (communication between distributed agents (<u>FIPA97v1</u>)); cooperative task competition and problem solving (<u>Kiss</u>)) and yielding no more than what one would expect from such an arrangement (a system of distributed agents, able to communicate to conduct cooperative task completion and problem solving).

Pet. 29 (citing Ex. 1020, 2; Ex. 1046, 50; Ex. 1003 ¶ 222).

Petitioner also argues, and we agree, that it

would have been obvious because a Skilled Artisan would have known that agents, such as in <u>Kiss</u>, must use a common communications protocol, i.e., an inter-agent communication language, and related management functionality, Ex. 1020, 2; Ex. 1046, 50, and therefore would have been motivated to consider and employ one of the available inter-agent communications languages and its related functionality, and

because doing so would have been a convenient and efficient way to facilitate effective communication between agents.

Pet. 29–30 (citing Ex. 1003 ¶ 223).

Petitioner goes on to argue that "a Skilled Artisan would also have been motivated based on earlier descriptions of KQML's similar use of an inter-agent communication language," (citing Ex. 1016, Abstract) and their disclosure that "[t]here are several levels at which agent-based systems must agree, at least in their interfaces, in order to successfully interoperate: Transport ... Language ... Policy ... Architecture," (citing Ex. 1016, 4, 29, 30) as well as their disclosure of "the necessity of a robust inter-agent communication language in a system like <u>Kiss</u>." Pet. 30 (citing Ex. 1006, 7; Ex. 1007, 41, 4–42; Ex. 1005, Abstract; Ex. 1003 ¶¶ 224–226).

Petitioner further argues that "[s]uch a combination would also have been obvious to try this combination because the necessity of a common inter-agent communication language was a known design need in a system such as Kiss," (citing Ex. 1020, 2; Ex. 1046, 50) and there were only a small number of identified, predictable solutions to that need, such as FIPA ACL." Pet. 30 (citing Ex. 1035, 1; Ex. 1003 ¶ 227).

Petitioner goes on to argue that a "Skilled Artisan" would also have been motivated to combine FIPA97 and Kiss in the manner described in the Petition "because of the known advantages of FIPA97, including that it specifies, 'key agents necessary for the management of an agent system, the ontology necessary for the interaction between systems, and it defines also the transport level of the protocols" (citing Ex. 1035, 1; Ex. 1003 ¶ 229), and "because FIPA97 represented a substantial attempt to formulate an

industry standard designed to encourage interoperability and uniformity amongst agent systems." Pet. 30–31 (citing Ex. 1007, vii; Ex. 1047).

Petitioner also explains that:

[a] Skilled Artisan would have been further motivated to include the administrative functionality and exemplary practices described in <u>FIPA97</u> with Kiss because the description of such functionality and practices in <u>FIPA97</u> suggests that their use with the FIPA ACL would be advantageous and workable. A Skilled Artisan would also have been motivated to employ such additional functionality and practices in the combined system in order to obtain the full benefit of using FIPA ACL.

Pet. 31 (citing Ex. 1003 ¶ 231).

In light of the reasons and the explanations Petitioner provides that would have motivated a person of ordinary skill in the art to combine the teachings of FIPA97 and Kiss in the manner Petitioner describes, Patent Owner's argument that "Petitioner utterly defaults in offering *any reason* to combine *Kiss* and *FIPA97*" (*see* PO Resp. 116) (emphasis added), is directly contrary to the evidence of record and is unpersuasive.

Patent Owner also argues that Petitioner "offers no reason or explanation that a person of skill in the art looking at *Kiss* would be motivated to find a particular language with the characteristics of FIPA97's ACL." *Id.* at 116. Patent Owner's argument, however, is misplaced. The test for obviousness is not whether a person of ordinary skill in the art "looking at *Kiss* would be motivated to find a particular language with the characteristics of FIPA97's ACL." Rather, "[u]nder the correct [obviousness] analysis, any need or problem known in the field of endeavor at the time of invention and addressed by the patent can provide a reason for

combining the elements in the manner claimed." KSR Int'l Co. v. Teleflex Inc., 550 U.S. 398, 420 (2007).

Here, Petitioner provides persuasive evidence and argument that FIPA97 and Kiss "are reasonably pertinent to the problem addressed by the 115 Patent—e.g., the need for 'flexible, fault-tolerant, distributed problem solving' using 'agent-based technologies." Pet. 29 (citing Ex. 1001, 4:34–40; Ex. 1005, 2:33–40; Ex. 1007, 1; Ex. 1003 ¶ 221). This evidence includes the '115 patent's observation that:

[a]gent-based systems have shown much promise for flexible, fault-tolerant, distributed problem solving. Several agent-based projects have helped to evolve the notion of facilitation. However, existing agent-based technologies and architectures are typically very limited in the extent to which agents can specify complex goals or influence the strategies used by the facilitator.

Ex. 1001, 4:34–40, as well as Kiss' observation that "a need exists for a knowledge management system for dynamic, distributed problem-solving systems. Ex. 1005, 2:39–40. Indeed, Dr. Lieberman notes that the FIPA97 specification "defines a language and supporting tools, such as protocols, to be used by intelligent software agents to communicate with each other," and that "the terms used and the mechanisms used [by FIPA97] support such a higher-level, often *task based*, view of interaction and communication." Ex. 1003 ¶ 221. This evidence support's Petitioner's position that a person of ordinary skill in the art at the time of the claimed invention would have combined FIPA97 and Kiss in the manner described in the Petition to provide a flexible, fault-tolerant, distributed problem solving system using agent-based technologies.

Finally, addressing Patent Owner argument that Petitioner's motivation to combine Kiss and FIPA97 suffers from "hindsight bias" (PO Resp. 116), we note that "[a]ny judgment on obviousness is in a sense necessarily a reconstruction based upon hindsight reasoning, but so long as it takes into account only knowledge which was within the level of ordinary skill at the time the claimed invention was made and does not include knowledge gleaned only from applicant's disclosure, such a reconstruction is proper." *In re McLaughlin*, 443 F.2d 1392, 1395 (CCPA 1971).

Here, Petitioner provides persuasive evidence that a person of ordinary skill in the art at the time of the invention would have been motivated to combine FIPA97's communications protocol and inter-agent communication language (FIPA ACL) between the agents of Kiss, adding its administrative functionality and practices to the Kiss system. *See, e.g.*, Pet. 28–32; Ex. 1003 ¶¶ 217–232. This is not evidence of hindsight bias. Patent Owner does not identify, and we do discern, any particular knowledge used by Petitioner in its combination of FIPA97 and Kiss that was gleaned from the '115 patent's disclosure and was not within the level of ordinary skill in the art at the time of the invention.

Based on the complete record, we find that Petitioner has shown persuasively by a preponderance of the evidence that one of ordinary skill in the art at the time of the invention would have been motivated to combine the teachings of FIPA97 and Kiss in the manner proffered by Petitioner.

2. Discussion of Independent Claim 1 — Differences Between the Claimed Subject Matter and the Prior Art

Claim 1 is directed to a method for communication and cooperative task completion among distributed electronic agents comprising the steps of registering a description of each active client agent's functional capabilities using an inter-agent language, receiving a request for service as a base goal in the form of an arbitrarily complex goal expression in the inter-agent language, and dynamically interpreting the arbitrarily complex goal expression. Ex. 1001, 29:10–43. Claim 1 also recites that the "inter-agent language" includes a "layer of conversational protocol" and a "content layer." *Id.* at 29:16–24. In addition, claim 1 recites that the step of "dynamically interpreting the arbitrarily complex goal expression" comprises "generating sub-goals" and "constructing a goal satisfaction plan." *Id.* at 29:28–32. The recited "goal satisfaction plan" in turn includes "a suitable delegation of sub-goal requests" and "dispatching each of the sub-goals to a selected client agent for performance." *Id.* at 29:32–41.

As discussed above, in its proposed combination of Kiss with FIPA97, Petitioner relies on Kiss to teach electronic agents and their general communication and collaboration functions, including the steps recited in claim 1, whereas FIPA97 is relied upon to teach the recited "inter-agent language" and the limitations relating to the inter-agent language, such as "layer of conversational protocol," a "content layer," an "arbitrarily complex goal expression," and "sub-goals expressed in the inter-agent language." Pet. 28, 32–54. Patent Owner argues that the proposed combination of Kiss and FIPA97 does not teach the "goal satisfaction plan" recited in the claim. PO Resp. 85–92. Patent Owner also asserts that FIPA97 does not teach the

"inter-agent language" (or Interagent Communication Language (ICL)) and related limitations. *Id.* at 95–108. In what follows, we analyze the recitations of claim 1 in more detail, addressing Petitioner's contentions and, where applicable, Patent Owner's responsive arguments.

a. Preamble

Claim 1 recites a preamble as follows: "A computer-implemented method for communication and cooperative task completion among a plurality of distributed electronic agents." Petitioner asserts that Kiss teaches the recited "distributed electronic agents" because Kiss describes that "[i]nteraction between a user and the knowledge resources is mediated by a collection of cooperative intelligent agents" (Pet. 32 (citing Ex. 1005, 2:43–49, Fig. 1)), where the agents are "distributed" in a "hierarchical architecture." *Id.* (citing Ex. 1005, Abstract, 2:50–55, 4:57–59).

Petitioner contends that Kiss also teaches the recited "communication and cooperative task completion" among the electronic agents because Kiss describes that "cooperative intelligent agents [that] incorporate generalized automated negotiation and distributed inference (i.e. problem-solving) processes," analyze "problem statements," and reorganize them as "sets of tasks." Pet. 33 (citing Ex. 1005, 2:50–55).

Patent Owner does not specifically dispute that Kiss teaches the preamble of claim 1. *See generally* PO Resp. Based on the complete record

²¹ Because Petitioner has shown that the recitations in the preamble is satisfied by Kiss, we need not determine whether the preamble is limiting. *See Vivid Techs.*, 200 F.3d at 803.

and for the reasons explained by Petitioner, we are persuaded that Petitioner has demonstrated sufficiently that Kiss teaches the preamble of claim 1.²²

b. Registering a Description

The first step recited in claim 1 is "registering a description of each active client agent's functional capabilities as corresponding registered functional capabilities." Ex. 1001, 29:13–15. Petitioner asserts that Kiss teaches this limitation because Kiss describes a "registry of agents," which is constructed through "registering a description of each active client agent's functional capabilities as corresponding registered functional capabilities." Pet. 34 (citing Ex. 1005, 3:37–45, 6:66–7:19, 8:41–48, 10:32–35, 12:18–20, Fig. 1).

Patent Owner does not specifically dispute that Kiss teaches this "registering a description" limitation. *See generally* PO Resp. Based on the complete record and for the reasons explained by Petitioner, we are persuaded that Petitioner has demonstrated sufficiently that Kiss teaches "registering a description of each active client agent's functional capabilities as corresponding registered functional capabilities," as recited in claim 1.²³

_

²² We also find that Patent Owner has waived any argument directed to the preamble of claim 1. *See* Paper 16 (Scheduling Order), 7 ("Patent Owner is cautioned that any arguments for patentability not raised in the response may be deemed waived.").

²³ We also find that Patent Owner has waived any argument directed to this claim limitation. *See* Paper 16, 7.

c. An Inter-agent Language Including a Layer of Conversational Protocol and a Content Layer

Claim 1 recites that "registering a description of each active client agent's functional capabilities" is performed using an "expandable, platform-independent, inter-agent language" (Ex. 1001, 29:13–16) and that the "inter-agent language" includes:

- a layer of conversational protocol defined by event types and parameter lists associated with one or more of the events, wherein the parameter lists further refine the one or more events;
- a content layer comprising one or more of goals, triggers and data elements associated with the events.

Id. at 29:16–24. Petitioner asserts that FIPA97's ACL teaches each of these limitations relating to an "inter-agent language." Pet. 34–43.

Patent Owner asserts that FIPA97 does not teach "refin[ing]... events" and "triggers" recited in the claim. PO Resp. 97–108. In addition, Patent Owner argues that FIPA ACL is not "expandable" because, among other reasons, FIPA ACL does not have the capability of refining events. *Id.* at 105–106. Patent Owner does not dispute FIPA97 teaches the rest of the limitations relating to an "inter-agent language" recited in clam 1, as set forth above. *See id.* at 95–108.

(i) Inter-agent Language

Petitioner relies on Agent Communication Language of FIPA97 (FIPA ACL) as teaching the "inter-agent language" recited in claim 1. Pet. 28 (citing Exs. 1006, 1007, 1008), 35. In particular, Petitioner contends that FIPA97 discloses Agent Communication Language (ACL) "with

precisely defined syntax, semantics and pragmatics" for "communication between independently designed and developed software agents." *Id.* at 35 (citing Ex. 1007, 3).

(ii) Platform-independent, Expandable Inter-agent Language

Petitioner asserts that FIPA ACL is "platform-independent," as recited in claim 1, because it is designed to "maximise interoperability across agent-based applications, services and equipment," and to facilitate the "construction and management of an agent system composed of different agents," even when those systems are "built by different developers." Pet. 35 (citing Ex. 1007, vii, ix). Patent Owner does not dispute that FIPA ACL is "platform-independent," as recited in the claim. *See* PO Resp. 95–108.

Petitioner also contends that FIPA ACL is "expandable," as recited in claim 1, because in FIPA97 "[a]gents may use communicative acts with other names, not defined" in the specification (Pet. 35 (citing Ex. 1007, 12)) and agents "may choose to implement any subset (including all, though this is unlikely) of the pre-defined message types and protocols" (*id.* (citing Ex. 1007, 12)). In addition, Petitioner asserts that in FIPA97 the "formal basis" of the language is "supplemented with pragmatic extensions" that help "ease the practical implementation of effective inter-agent communications." *Id.* (citing Ex. 1007, 11). Petitioner argues that FIPA97 also discloses possible extensions to the inter-agent communication language, such as MIME header support. *Id.* (citing Ex. 1007, 82).

Patent Owner asserts that FIPA ACL is not "expandable" basically for two reasons. PO Resp. 105–106. First, citing the prosecution history, Patent

Owner argues that "the concept of expandability" relates to the feature of "refin[ing] . . . events" recited in the claim and that FIPA ACL is not "expandable" because FIPA ACL does not have the capability of refining events. *Id.* Second, Patent Owner contends that FIPA ACL is not "expandable" in a general sense, citing various criticism of FIPA ACL from "[r]esearchers in the field" regarding FIPA ACL's alleged rigidity and inflexibility in certain aspects. *Id.* at 106. We address each of these arguments in turn.

Addressing first Patent Owner's argument about "the concept of expandability" as it relates to the feature of "refin[ing] . . . events" recited in the claim, Patent Owner cites the following statement by the Examiner in the Notice of Allowability:

The disclosed agent communication language [KQML] does not read upon the cited agent language because the layer does not define an event type as well as the parameter lists that further refines the event. Nwana's language at best has separate layers for the event and the parameters associated with the event. By Applicant providing these parameters in the same layer as the event such that they further refine the event, a standard set of events are dynamically extensible based upon the parameter list which is not possible with the teachings of Nwana. Therefore, the claims are allowable over the prior art of record.

Ex. 1002, 14 (emphases added); PO Resp. 105 (citing Ex. 1002, 14). As indicated in the Amendment submitted before the allowance of the claims, claim 1 was amended to recite "wherein the parameter lists further refine the one or more events" to distinguish the claim from the combination of Nwana/KQML and Kiss cited by the Examiner. *See* Ex. 1002, 13–14, 18, 28, 51. Patent Owner argues, therefore, that the limitation "expandable"

recited in claim 1 relates to the feature of the parameter lists that "refine . . . events," as recited in the claim. PO Resp. 105. Patent Owner asserts that FIPA ACL is not "expandable," as recited, because FIPA ACL does not teach parameters that further refine events. *Id*.

In response, Petitioner asserts that the claim language "using an expandable, platform-independent, inter-agent language" was part of the originally filed claims, which were rejected by the Examiner over the combination of Nwana/KQML and Kiss. Pet. Reply 59–60 (citing Ex. 1002, 763). Petitioner argues that, therefore, the Examiner's discussion of "dynamically extensible" events resulting from the "refin[ing] . . . events" feature added in the Amendment is unrelated to the "expandable" language that was present in the claim as originally filed. *Id.* at 60. Petitioner also asserts that, even if the "expandable" language relates to the "refin[ing] . . . events" feature, FIPA ACL is "expandable" because FIPA ACL teaches parameter lists that refine events. *Id*.

We need not determine whether the "expandable" language relates to the "refin[ing] . . . events" feature added in the Amendment because, as discussed below, we agree with Petitioner that FIPA ACL teaches "parameter lists" that "further refine the one or more events," as recited in claim 1. Thus, to the extent Patent Owner asserts that the limitation "expandable" recited in claim 1 relates to the feature of the parameter lists "refin[ing] . . . events," Petitioner demonstrates sufficiently that FIPA ACL teaches an "expandable . . . inter-agent language."

Turning to the Specification, the '115 patent describes that "[a]s new agents connect to the facilitator, *registering* capability specifications and

natural language vocabulary, what the user can say and do *dynamically changes*; in other words, the ICL is dynamically *expandable*." Ex. 1001, 8:41–44 (emphases added). That is, the '115 patent suggests that the expandability of the ICL (or "inter-agent language," as recited in claim 1) results from or flows from the ICL's feature of "registering capability specifications and natural language vocabulary." *Id.* As noted in the Institution Decision, this portion of the Specification appears to describe an exemplary embodiment. Inst. Dec. 54 (citing Ex. 1001, 8:40–49).

As discussed above, Petitioner demonstrates sufficiently Kiss teaches "registering a description of each active client agent's functional capabilities as corresponding registered functional capabilities," as recited in claim 1. Thus, to the extent the portion of the Specification discussed above describes an embodiment of an "expandable . . . inter-agent language," we are persuaded that the combination of Kiss and FIPA97 teaches "registering a description of each active client agent's functional capabilities as corresponding registered functional capabilities, using an expandable, platform-independent, inter-agent language," as recited in claim 1 (*see* Pet. 33–35).

Next, Patent Owner asserts that FIPA ACL is not "expandable" in a more general sense, citing various "criticisms" from "[r]esearchers in the field" about FIPA ACL's alleged "rigidity and lack of expandability." PO Resp. 106 (citing Ex. 2031, 2 ("[i]t is unlikely that a single set of axioms

²⁴ As described in the Specification, agents connecting to the facilitator is part of the operation of the system of the '115 patent, not a feature of the ICL. *See* Ex. 1001, 6:24–44; 7:13–32.

will cover all eventualities because communication is inherently context dependent"); Ex. 1081, 2 ("[T]he current FIPA-ACL spec tends to unnecessarily over-constrain the feasibility of communication acts "). Patent Owner also contends that Petitioner's declarants, Dr. Finin and Dr. Lieberman, made allegedly similar statements. *Id.* (citing Ex. 1082, 2 ("The FIPA proposal only covers the most rudimentary message types."); Ex. 2014, 207:5–20 ("FIPA is a standard, like a miles-per-gallon standard ... So that doesn't say how you're going to build a car; it just says a car has to get ... 50 miles a gallon.")).

We are not persuaded by Patent Owner's argument and evidence because Patent Owner does not explain adequately why the cited extrinsic evidence regarding FIPA ACL's alleged "rigidity" or inflexibility in certain aspects shows that FIPA ACL is not "expandable" as recited in the claim. In the Institution Decision, based on the preliminary record, we did not find anything in the intrinsic record that justifies deviating from the plain meaning of the claim term "expandable." Inst. Dec. 54–55. Upon considering the complete record, we discern no reason to depart from our preliminary assessment.²⁵

We may "at any time in order to better understand the underlying technology and may also rely on dictionary definitions when construing

²⁵ In the Patent Owner Response, Patent Owner does not discuss the Specification or argue that the meaning of "expandable" recited in the claim can be discerned from the Specification, although we invited the parties in the Institution Decision to address the term "expandable" further in their papers during trial. See PO Resp. 105–107 (citing Inst. Dec. 55–56). Thus, Patent Owner has waived its argument regarding the meaning of "expandable" based on any disclosures in the Specification. See Paper 16, 7.

claim terms, so long as the dictionary definition does not contradict any definition found in or ascertained by a reading of the patent documents." *Phillips*, 415 F.3d at 1322–23 (citation omitted). Accordingly, in the Institution Decision, finding no readily discernable meaning of "expandable" in the intrinsic record, we consulted a technical dictionary, the 7th edition of the IEEE Dictionary (Ex. 3001). The IEEE Dictionary defines "expandability" as follows: "expandability (1) (supervisory control, data acquisition, and automatic control) The capability of a system to be increased in capacity or provided with additional functions. (2) *See also:* extendability." Ex. 3001, 3.27 The same dictionary defines "extensible language" as follows.

A computer language that can be altered or can alter itself to provide a programmer with additional user-specified functions or capabilities. Examples include Ada, ALGOL, FORTH, and LOGO, because each can be used in a building block fashion to construct increasingly complex functions.

Id. at 4. Upon considering the complete record, we determine that these dictionary definitions are consistent with the intrinsic record, including the description of an embodiment in the Specification regarding "the ICL [being] dynamically expandable." *See* Ex. 1001, 8:41–44.

In the Institution Decision, based on the preliminary record, we found that the characteristics of FIPA ACL argued by Petitioner—such as the

²⁶ IEEE 100 The Authoritative Dictionary Of IEEE Standards Terms (7th ed. 2000) (Ex. 3001).

²⁷ The page numbers for Exhibit 3001 refer to the page numbers inserted in the bottom, right-hand corner of each page.

ability to use communicative acts with other names not defined in the language specification, the pragmatic extensions, and the MIME extension—appear to fall within the plain meaning of the term "expandable," as defined in the IEEE Dictionary. Inst. Dec. 55; see Pet. 35 (citing Ex. 1007, 11, 12, 82). Patent Owner does not argue otherwise. See PO Resp. 105–107. Based on the complete record and for the reasons discussed above, we determine that Petitioner has shown sufficiently that the combination of Kiss and FIPA97 teaches "registering a description of each active client agent's functional capabilities as corresponding registered functional capabilities, using an expandable, platform-independent, interagent language," as recited in claim 1.

(iii) A Layer of Conversational Protocol Defined by Event Types and Parameter Lists Associated With the Events

Claim 1 recites that the "inter-agent language" includes "a layer of conversational protocol defined by event types and parameter lists associated with one or more of the events, wherein the parameter lists further refine the one or more events." Ex. 1001, 29:16–21. Petitioner contends that FIPA97 teaches each of these limitations. Pet. 36–41. Patent Owner asserts that FIPA97 does not teach "the parameter lists further refine the one or more events," as recited in claim 1. PO Resp. 97–107.

(1) A Layer of Conversational Protocol

Petitioner asserts that FIPA97 teaches "a layer of conversational protocol" recited in claim 1 because FIPA ACL "defines the semantics of *messages* between agents as including a communicative act, followed by various parameters and parameter expressions," as shown in Figure 1 of

Part 2 of FIPA97 reproduced above in the Overview of FIPA97 section (§ III.C.2.). Pet. 36 (emphasis added) (citing Ex. 1007, 2; Ex. 1003 ¶ 235). Petitioner also argues that FIPA97 "discloses a number of different performatives and rules governing FIPA ACL messages and the meaning of the different parts" and, therefore, discloses "a layer of conversational protocol." *Id.* at 36–37 (citing Ex. 1007, 11–22; Ex. 1003 ¶¶ 236–239).

(2) Events and Event Types

As discussed above in Section III.B. (Claim Construction), we construe "event" to mean "a message or goal communicated between agents" and "event type" to mean "a type of an event" for this Final Written Decision.

Petitioner maps the "event" of claim 1 to FIPA ACL's "message" and asserts that FIPA ACL's "message type" teaches an "event type" recited in claim 1. Pet. 37–38 (citing Ex. 1007, 3, 4, 11–13, 18; Ex. 1003 ¶¶ 243, 246, 247). Petitioner argues that FIPA ACL's "message" is an "event" recited in claim 1 because the FIPA ACL communicative acts "are performed by an agent sending a *message* to another agent." *Id.* at 37 (emphasis added) (citing Ex. 1007, 3, 4, 11; Ex. 1003 ¶ 243).

Referencing Figure 1 of Part 2 of FIPA97 reproduced above, Petitioner asserts that in FIPA ACL, "[t]he first element of the message is a word which identifies the communicative act being communicated, which defines the principal meaning of the message," and "the message's communicative act *type* corresponds to that which in KQML is called the performative." Pet. 37 (emphasis added) (citing Ex. 1007, 12, 13; Ex. 1007 ¶ 244). Petitioner argues that FIPA97 further defines "message type" as

corresponding to the "communicative acts/performatives of the FIPA ACL." *Id.* at 38 (citing Ex. 1007, 18; Ex. 1003 ¶ 246).

As discussed above, Petitioner asserts that FIPA97 teaches "a layer of conversational protocol" because FIPA ACL "defines the *semantics of messages* between agents as including a communicative act." Pet. 36 (emphasis added) (citing Ex. 1007, 12). Petitioner contends that FIPA97 teaches the layer of conversational protocol in FIPA ACL is "defined by event types," as recited in claim 1, because in FIPA97, "[t]he <u>message types</u> are a reference to <u>the semantic acts</u> defined in this specification." *Id.* at 37–38 (underlined emphases added) (citing Ex. 1007, 11).

(3) Parameter Lists

Claim 1 recites that "a layer of conversational protocol" is also "defined by . . . parameter lists associated with one or more of the events." Petitioner asserts that in FIPA97, FIPA ACL messages may include multiple different parameters ("parameter lists associated with one or more of the events") that can "help the message transport service to deliver the message correctly" or "the receiver to interpret the meaning of the message," or "to respond co-operatively," as shown in Figure 1 of Part 2 of FIPA97 (reproduced above). Pet. 38–39 (citing Ex. 1007, 12, 14, Fig. 1). Petitioner contends that FIPA97 discloses additional parameters in Table 1. *Id.* at 39 (citing Ex. 1007, 13–14).

(4) Refining Events

Claim 1 recites that "the parameter lists further refine the one or more events." Petitioner asserts that this phrase should be construed to mean that

"a list of parameters associated with an event can refine the event by affecting the meaning of the event." Pet. 13. Petitioner discusses the disclosures in the Specification and the prosecution history of the '115 patent in support of its proposed construction. *Id.* at 13–16 (citing Ex. 1001, 11:2–37; Ex. 1002, 13–14, 51, 55; Ex. 1020, 5, 6; Ex. 1003 ¶¶ 90, 91, 93–98).

Although Patent Owner discusses constructions for six terms in the Patent Owner Response, Patent Owner does not discuss Petitioner's proposed construction for the claim term "refine . . . events" or propose its own construction. *See* PO Resp. 24–38. Instead, Patent Owner argues that FIPA97 does not teach parameters that "refine . . . events" under Petitioner's proposed construction. *See* PO Resp. 97–98 ("the cited parameters in FIPA97 do not, contrary to Petitioner's assertion, affect the meaning of the message"), 100 ("this parameter does not affect the meaning of the message"), 102 ("In contrast, the FIPA97 "receiver" parameter does not affect the meaning of the "inform" communicative act."). Based on the arguments and evidence presented by Patent Owner, we understand Patent Owner not to dispute Petitioner's proposed construction for the term "the parameter lists further refine the one or more events."²⁸

Upon considering the complete record, we agree with Petitioner that the claim term "refine . . . events" encompasses "affecting the meaning of the events." As discussed above, during prosecution, the limitation "wherein the parameter lists further refine the one or more events" was added to

²⁸ We also find that Patent Owner has waived any argument regarding claim construction of this term. *See* Paper 16, 7.

claim 1 in an amendment to distinguish the claim from the combination of Nwana/KQML and Kiss cited by the Examiner. *See* Ex. 1002, 13–14, 18, 28, 51; Pet. 14–16 (citing Ex. 1002, 13–14, 51); PO Resp. 105 (citing Ex. 1002, 14). Citing the disclosures of Nwana/KQML discussed by the Examiner, Petitioner persuasively argues that the parameters of Nwana's KQML message (i.e., the claimed "event") "tell" do not change the meaning of the message, whereas the parameters of an event of the '115 patent's change the meaning of the event by "refin[ing] the event." Pet. 14–16 (citing Ex. 1002, 13–14, 51, 55; Ex. 1020, 5, 6). In support of its argument, Petitioner cites the following passage from the Specification that distinguishes the '115 patent's ICL (i.e., the recited "inter-agent language") from KQML.

For example, in KQML, a request to satisfy a query can employ either of the performatives ask_all or ask_one. In ICL, on the other hand, this type of request preferably is expressed by the event type evost solve, together with the solution_limit(N) parameter--where N can be any positive integer. (A request for all solutions is indicated by the omission of the solution limit parameter.) [The request can also be accompanied by other parameters, which combine to <u>further refine</u> its semantics.] In KQML, then, this example forces one to choose between two possible conversational options, neither of which may be precisely what is desired. In either case, the performative chosen is a single value that must capture the entire conversational characterization of the communication.

Pet. 13 (alteration and underlined emphasis added) (quoting Ex. 1001, 11:21–37). Petitioner argues that a message having the KQML performative "ask_all" always has the same meaning, requesting all solutions to the request, just as the KQML performative "ask one" always requests one

solution. *Id.* at 14. According to Petitioner, in contrast, the meaning of the '115 patent's event "evost_solve" depends on the value of its parameter "solution_limit(N)"—e.g., an agent may request the identity of three agents capable of translating a document by including "solution_limit(N)" in the message and setting the value of N to 3. *Id.* Thus, Petitioner argues that the parameters of an event of the '115 patent affect the meaning of the event. *Id.* at 13–16.

We are persuaded by Petitioner's argument and evidence that the "parameterized approach" of the '115 patent (Ex. 1001, 11:16–21) can refine an event by changing the meaning of the event. As discussed above in Section III.B., we construe "event" to mean "a message or goal communicated between agents" and "goal" to mean "a request for service." The '115 patent describes that "[i]n one embodiment, a request for one of an agent's services normally arrives in the form of an *event* from the agent's facilitator." *Id.* at 12:44–46 (emphasis added). In a section titled "Refining Service Requests," the '115 patent describes as follows:

In a preferred embodiment of the present invention, *parameters* associated with a goal (or sub-goal) can draw on useful features to *refine the request's meaning*. For example, it is frequently preferred to be able to specify whether or not solutions are to be returned synchronously; this is done using the reply parameter, which can take any of the values synchronous, asynchronous, or none. As another example, when the goal is a non-compound query of a data solvable, the cache parameter may preferably be used to request local caching of the facts associated with that solvable.

Id. at 15:49–58 (emphases added). Thus, the '115 patent describes that in an embodiment, parameters of a request for service, i.e., an event, can refine the "meaning" of the request or event.

Nonetheless, we note that this passage and all of the disclosures of the '115 patent cited by Petitioner describe exemplary embodiments. See id. at 11:25–28 ("In ICL . . . this type of request *preferably* is expressed by the event type evost solve, together with the solution limit(N) parameter--where N can be any positive integer." (emphasis added)), 15:49-51 ("In a preferred *embodiment* of the present invention, *parameters* associated with a goal (or sub-goal) can draw on useful features to refine the request's meaning." (emphases added)). Thus, the term "refine . . . events" recited in claim 1 may encompass but is not necessarily limited to "affecting the meaning of events." See SuperGuide, 358 F.3d at 875 ("a particular embodiment appearing in the written description may not be read into a claim when the claim language is broader than the embodiment"); WesternGeco, 889 F.3d at 1323–24 ("It is well established that claims are not limited to preferred embodiments, unless the specification clearly indicates otherwise."). Indeed, Petitioner's proposed construction of the term "the parameter lists further refine the one or more events" expresses the meaning of the term in a permissive fashion—"an event can refine the event by affecting the meaning of the event." Pet. 13 (emphasis added).

Based on the complete record, we determine that the term "the parameter lists further refine the one or more events" encompasses parameters "affecting the meaning of the events."

Petitioner asserts that FIPA97 teaches the limitation "the parameter lists further refine the one or more events" because several of the conversational layer parameters disclosed in FIPA97 affect the meaning of the performative included within the message, and therefore affect the meaning of the message, or event. Pet. 40. According to Petitioner, FIPA97 discloses a parameter ":receiver," which "can alter the meaning [of] an event, such as 'inform,' to be 'inform one'" or "inform a number' of agents, depending on the value of the parameter." Id. (citing Ex. 1007, 13). Citing the testimony of Dr. Lieberman, Petitioner asserts that naming a tuple "corresponds to the action of multicasting the message" such that "semantics of this multicast" is refined so that "the message is sent to each agent named in the tuple." *Id.* (citing Ex. 1007, 13; Ex. 1003 ¶ 258). Petitioner also argues, "[t]his 'tuple naming' functionality is analogous to the example provided in the '115 Patent of 'solution limit(N),' in which 'N' modifies how many solutions are requested, and is not found in the KQML Nwana reference that was before the examiner." *Id.* (citing Ex. 1001, 11:16–42; Ex. 1020; Ex. 1003 ¶ 258). Petitioner also asserts that FIPA97 discloses two other parameters—":protocol" when used with the "call for proposals" performative and ":conversation-id"—that affect the meaning of a message. *Id.* at 40–41 (citing Ex. 1007, 13–14, 46–49; Ex. 1003 ¶¶ 261–265).

Patent Owner asserts that FIPA97 does not teach parameters "refin[ing] . . . events," as recited in the claim, because the parameters of FIPA97 cited by Petitioner does not affect the meaning of the message. PO Resp. 97–98. In particular, Patent Owner contends that FIPA97's ":receiver" parameter of the FIPA97 "inform" message relied upon by

Petitioner is no different from KQML's ":receiver" parameter for the KQML "tell" message in that both modify the message but do not affect the meaning of the message. *Id.* at 98–99 (citing Ex. 1007, 12; Ex. 1020, 5). Patent Owner asserts that FIPA97's ":receiver" parameter does not affect the meaning of the FIPA97 "inform" message because "the result of this parameter is only that the message is multicast; i.e., it is 'sent to each agent named in the tuple." *Id.* at 100. According to Patent Owner, "the content of the message is unchanged; the only thing that changes is who (as in, recipient) receives the message." *Id.* at 101.

The portion of FIPA97 cited by Petitioner is reproduced below.

Message Parameter:	Meaning:
:sender	Denotes the identity of the sender of the message, i.e. the name of the agent of the communicative act.
:receiver	Denotes the identity of the intended recipient of the message.
	Note that the recipient may be a single agent name, or a tuple of agent names. This corresponds to the action of multicasting the message. Pragmatically, the semantics of this multicast is that the message is sent to each agent named in the tuple, and that the sender intends each of them to be recipient of the CA encoded in the message. For example, if an agent performs an inform act with a tuple of three agents as receiver, it denotes that the sender intends each of these agent to come to believe the content of the message.

Ex. 1007, 13. Pointing to this disclosure in FIPA97, Petitioner asserts that the "receiver" parameter affects the meaning of the event by affecting "whether the performative communicates the message to a single agent, a selection of agents, or if [the message is] broadcast to every agent." Pet. Reply 56 (citing Ex. 1007, 13). According to Petitioner, "in FIPA97, an

event using 'inform' can *mean three or more different things* (i.e., inform (1) one person, (2) a select group of people, (3) everybody) depending on the value of just that parameter." *Id.*

We agree with Petitioner's argument and disagree with Patent Owner's argument. As shown above in the portion of FIPA97 relied on by Petitioner, FIPA97 describes the "meaning" of the message affected by the "receiver" parameter (under the column heading "Meaning:") as follows:

Note that the recipient may be a single agent name, or a tuple of agent names. This corresponds to the action of multicasting the message. Pragmatically, the semantics of this multicast is that the message is sent to each agent named in the tuple, and that the sender *intends* each of them to be recipient of the CA encoded in the message. For example, if an agent performs an inform act with a tuple of three agents as receiver, it denotes that the sender *intends* each of these agent to come to believe the content of the message.

Ex. 1007, 13 (emphases added). We agree with Petitioner this passage describes, under the column heading "Meaning," the meaning of the message modified or affected by the ":receiver" parameter.

Patent Owner argues that the FIPA97 ":receiver" parameter does not change "the content of the message" and that "the only thing that changes is who (as in, recipient) receives the message." PO Resp. 101. Patent Owner contends that, in contrast, the solution_limit(N) parameter of the '115 patent "modifies the actual request/communicative act/performative itself—i.e., evost solve, because it imposes a modification on the limits of solutions presented in response to a request." *Id.* at 102 (citing Ex. 2032 ¶161).

We are not persuaded by Patent Owner's argument. First, we disagree with Patent Owner that the FIPA97 ":receiver" parameter changes only

"who (as in, recipient) receives the message." As described in FIPA97, the ":receiver" parameter does not merely specify "who receives the message," e.g., agent A as opposed agent B. Rather, as persuasively explained by Petitioner, the ":receiver" parameter affects the qualitative aspect of the message—i.e., whether to inform (1) one agent, (2) a select group of agents, or (3) every known agent. *See* Pet. Reply 56.

In addition, Patent Owner does not explain adequately why the solution_limit(N) parameter of the '115 patent specifying the number of agents to be queried "modifies the actual request/communicative act/performative itself" but the ":receiver" parameter of FIPA97 specifying the number of agents to which to send a message does not. *See* PO Resp. 100–101. We agree with Petitioner that Patent Owner does not identify "a practical distinction between limiting the number of agents to be queried (solution_limit(N)), and querying a selection of agents (:receiver)." Pet. Reply 57.

Next, Patent Owner contends that FIPA97 does not teach parameters "refin[ing] . . . events," as recited in the claim, because FIPA97's ":receiver" parameter is the same as or similar to the KQML ":receiver" parameter, which does not modify the meaning of a message. PO Resp. 98–99 (citing Ex. 1007, 12; Ex. 1020, 5). In support of its argument, Patent Owner cites a page from Dr. Finin's presentation slides at an unidentified meeting or class, which compares "KQML tell and FIPA ACL inform." *Id.* 99–100 (citing Ex. 2019, 15; Ex. 2013, 132:6–22.). Patent Owner also cites the testimony from Dr. Finin at his deposition that "the general idea of agent

communication language that was embodied in KQML is similar to the one that is embodied in FIPA." *Id.* at 100 (citing Ex. 2012, 32:10–17).

Patent Owner, however, does not discuss the disclosure of KQML/Nwana (Ex. 1020) sufficiently (other than pointing to the similarity of the format between the ":receiver" parameter of KQML and FIPA97) or explain adequately why KQML's ":receiver" parameter is similar to the FIPA97 ":receiver" parameter. See PO Resp. 98–100. For example, Patent Owner does not explain whether KQML's ":receiver" parameter specifies, similar to FIPA97, that "the recipient may be a single agent name, or a tuple of agent names," that "the message is sent to each agent named in the tuple," and that "the sender *intends* each of them to be recipient of the message." See id.; Ex. 1007, 13 (emphasis added). The general statements from Dr. Finin (or a slide purportedly from his unidentified presentation) cited by Patent Owner (PO Resp. 99–100 (citing Ex. 2019, 15; Ex. 2013, 132:6–22, 32:10–17)) regarding the alleged similarity between KQML and FIPA97 at a general level are simply insufficient to override the specific disclosures in FIPA97 cited by Petitioner regarding the meaning of the message modified or affected by the FIPA97 ":receiver" parameter.

Patent Owner also cites testimony from Petitioner's declarant, Dr. Lieberman, as "confirm[ing]" that the FIPA97 ":receiver" parameter does not change "the content of the message" and that "the only thing that changes is who (as in, recipient) receives the message." PO Resp. 101 (citing Ex. 2014, 110:14–111:16, 168:5–12). The cited testimony of Dr. Lieberman, however, discusses FIPA97's messages and multicasting in general (responding to general questions from Patent Owner's counsel) and

does not discuss the specific disclosure in FIPA97 cited by Petitioner regarding the meaning of the message modified or affected by the FIPA97 ":receiver" parameter. *See* Ex. 2104, 108:4–111:16, 168:5–12. Thus, we find Patent Owner's citation to the testimony of Dr. Lieberman to be unpersuasive (if not misleading) to "confirm" that the FIPA97 ":receiver" parameter does not change "the content of the message" and that "the only thing that changes is who (as in, recipient) receives the message." *See* PO Resp. 101.

Next, Patent Owner cites 9 paragraphs from the Declaration of Dr. Cohen (Ex. 2033) to argue that "FIPA97 does not contain any conversational layer parameters that affect the semantics of FIPA97 messages." PO Resp. 103 (citing Ex. 2033 ¶¶ 80–89).²⁹ Patent Owner, however, does not discuss Dr. Cohen's testimony in the Patent Owner Response or explain how Dr. Cohen's testimony supports its contention. *See id.* Thus, to the extent Petitioner purports to rely on Dr. Cohen's testimony, this amounts to improper incorporation by reference in violation of 37 C.F.R. § 42.6(a)(3). Accordingly, we decline to consider the cited paragraphs from the Cohen Declaration. We note, nonetheless, that Dr. Cohen's testimony appears to dwell in generalities, e.g., citing the works of logicians/philosophers Tarski and Frege (*see* Ex. 2033 ¶¶ 80–81), and discusses tuples and multicasting in general terms (*see id.* ¶¶ 85–88).

Lastly, Patent Owner contends that the limitation "the parameter lists further refine the one or more events" requires "the parameters of an event

²⁹ Patent Owner's citation to the Cohen Declaration appears to be mistaken since the last paragraph of Cohen Declaration is paragraph 88.

(or message) can refine the message or goal itself" (PO Resp. 97) or "change the nature of the communicative act itself" (id. at 102). Although it is not entirely clear what Patent Owner argues,³⁰ to the extent Patent Owner argues "refin[ing]" a messages or goal requires changing the message or goal itself, we disagree with Patent Owner's argument. As discussed above, in a section titled "Refining Service Requests," the '115 patent describes examples of "parameters" associated with a request or goal that "refine the request's meaning," including the "reply parameter" that specifies whether solutions are to be returned synchronously or asynchronously, and the "cache parameter" that specifies local caching of facts related to the request. See Ex. 1001, 15:49–58. These parameters do not appear to change the request itself but, rather, specify how the request should be handled—e.g., synchronous response, local caching, etc. Thus, we are not persuaded by Patent Owner's argument that the claim requires the recited "parameters" "refine the message or goal itself" (PO Resp. 97) or "change the nature of the communicative act itself" (id. at 102). Such an interpretation, which "excludes a [disclosed] embodiment from the scope of the claim is rarely, if ever, correct." Broadcom Corp. v. Emulex Corp., 732 F.3d 1325, 1333 (Fed. Cir. 2013) (quoting Accent Pkg., Inc. v. Leggett & Platt, Inc., 707 F.3d 1318, 1326 (Fed. Cir. 2013)) (citing *Phillips*, 415 F.3d at 1312–13).

Based on the foregoing and upon considering the complete record, we determine that Petitioner has shown sufficiently that FIPA97 teaches

³⁰ As discussed above, Patent Owner does not dispute Petitioner's proposed construction of the term "the parameter lists further refine the one or more events." *See* PO Resp. 24–38.

"wherein the parameter lists further refine the one or more events," as recited in claim 1. Based on the complete record and for the reasons explained by Petitioner, we determine that Petitioner has shown sufficiently that FIPA97 teaches "a layer of conversational protocol defined by event types and parameter lists associated with one or more of the events, wherein the parameter lists further refine the one or more events," as recited in claim 1.

(vi) Content Layer Comprising Goals and Triggers

Claim 1 recites that the "inter-agent language" includes "a content layer comprising one or more of goals, triggers and data elements associated with the events." Petitioner asserts that FIPA97 teaches the recited "content layer" because FIPA97 describes various rules and standards governing the content that may be embedded within messages ("a content layer"). Pet. 42 (citing Ex. 1007, 3, 9, 14–16). Petitioner argues that the '115 patent consistently explains that the "content layer" of the disclosed ICL "consists of the specific goals, triggers, and data elements that may be *embedded* within various events." *Id.* at 9 (Ex. 1001, 11:13–15).

Petitioner also contends that FIPA97 teaches "a content layer comprising one or more of goals . . . associated with the events" because in FIPA97 "goals can be communicated among agents through the use of an achieve domain-language primitive." Pet. 42 (emphasis added) (citing Ex. 1007, 81).

Petitioner asserts that FIPA97 also teaches "data elements associated with the events" because FIPA ACL supports content expression through

objects and other data ("data elements") associated with various performatives. Pet. 43 (citing Ex. 1007, 14).

(1) Triggers

Petitioner asserts that a "trigger" recited in claim 1 is "a general mechanism for requesting some action be taken when one or more conditions is met." Pet. 11 (citing Ex. 1001, 21:21–22:31; Ex. 1003 ¶¶ 80–81). Patent Owner does not dispute Petitioner's proposed meaning of "trigger" (*see* PO Resp. 24–38) and argues that FIPA97 does not teach triggers under Petitioner's interpretation of the term (*see id.* at 107–108). We adopt this undisputed interpretation of "trigger" for this Final Written Decision because the construction is consistent with the disclosure in the Specification. *See* Ex. 1001, 21:22–24 ("triggers [provide] a general mechanism for requesting some action be taken when a set of conditions is met").

Petitioner asserts that FIPA97 discloses "triggers" for various performative actions within the content layer, including for use with the performative "accept-proposal" which "informs the receiver that it intends that (at some point in the future) the receiving agent will perform the action, once the given *precondition* is, or becomes, true." Pet. 43 (emphasis added) (citing Ex. 1007, 23). Petitioner argues that FIPA97 also discloses that the performative "propose" can be used "to make a proposal or respond to an existing proposal during a negotiation process by proposing to perform a given action subject to certain *conditions* being true." *Id.* (emphasis added) (citing Ex. 1007, 34; Ex. 1003 ¶¶ 277–279).

Petitioner argues that the '115 patent describes "triggers" as "providing a general mechanism for requesting some action be taken when a set of *conditions* is met," and that such triggers "preferably specif[y] at least a *condition* and an action . . . [t]he *condition indicates under what circumstances the trigger should fire*, and the action indicates what should happen when it fires." Pet. 11 (emphases added) (citing Ex. 1001, 21:21–34).

Patent Owner contends that the portions of FIPA97 cited by Petitioner do not describe "a settable trigger that kicks in when a specified event takes place." PO Resp. 108. Patent Owner asserts that the communicative acts (or performative actions) cited by Petitioner instead are "performatives that contain parameters dictating what the associated action is." *Id.* at 107 (citing Ex. 2032 ¶¶ 168–169).

Patent Owner also cites 35 paragraphs from the Cohen Declaration in support of its argument. *Id.* at 108 (citing Ex. 2033 ¶¶ 30–64). Patent Owner, however, does not discuss Dr. Cohen's testimony in the Patent Owner Response or explain how Dr. Cohen's testimony supports its contention. *See id.* at 107–108. Thus, to the extent Petitioner purports to rely on Dr. Cohen's testimony, this amounts to improper incorporation by reference in violation of 37 C.F.R. § 42.6(a)(3). Accordingly, we decline to consider the cited paragraphs from the Cohen Declaration.

Petitioner argues that the performative "accept-proposal" "informs the receiver that it intends that (at some point in the future) the receiving agent will perform the action, once the given precondition is, or becomes, true."

Pet. Reply 63 (citing Ex. 1007, 23). Petitioner cites the following testimony from Dr. Lieberman:

[T]he "precondition" is sent to an agent through the "content layer," then at some future point when that "precondition" is met the receiving agent will "trigger" and take an action based upon the information encoded in the "content layer" of the message. **EX1007, 23**.

Id. (citing Ex. 1003 \P 276). Pointing to the description in the cited portion of FIPA97, Petitioner argues

[A]s explained by Dr. Lieberman, and shown in <u>FIPA97</u>, the performative "accept-proposal" ("[a] general mechanism for requesting") will take an action—in this example, streaming a multimedia channel ("some action be taken")—when "the customer is ready" ("when one or more conditions is met"). Further, the example above shows how this trigger information is stored within the "content layer."

Id. at 64 (reproducing the description of the performative "accept-proposal" in Ex. 1007, 23).

Petitioner contends that Dr. Lieberman and the Petition describe many other possible triggers, including the "propose" performative and the "request-when" performative. *Id.* at 65. Petitioner asserts that the "propose" performative "informs the receiver that the proposer will adopt the intention to **perform the action once the given precondition is met**" (*id.* (citing Ex. 1007, 34; Ex. 1003 ¶¶ 277–279; Pet. 43)) and that the "request-when" performative is used when "[t]he sender wants the receiver to perform some action **when some given proposition becomes true**" (*id.* (citing Ex. 1007, 40; Ex. 1003 ¶ 414; Pet. 63–64)). Petitioner points to the description of the "request-when" performative in FIPA97 and argues that the performative

"request-when" ("[a] general mechanism for requesting") will take an action—in this example, sending a message ("some action be taken")—when "an alarm occurs" ("when one or more conditions is met"). *Id.* at 66. Petitioner concludes that FIPA97, therefore, discloses multiple "triggers" recited in claim 1. *Id.*

Patent Owner does not dispute Petitioner's responsive arguments in the Reply, but instead contends that Petitioner's arguments are presented "too late" and that "Petitioner cannot fix the deficiencies of its Petition on Reply." PO Sur-reply 54. To the extent Patent Owner argues that Petitioner's arguments in the Reply are improper new arguments outside the scope of a proper reply, we disagree. As discussed above, Petitioner's arguments in the Petitioner Reply on whether FIPA97 teaches the "triggers" recited in the claim are directly responsive to Patent Owner's arguments raised in the Patent Owner Response. *See Belden Inc. v. Berk-Tek LLC*, 804 F.3d 1064, 1078–80 (Fed. Cir. 2015) (explaining that the Board may rely on new evidence submitted with a reply because that evidence was responsive to the arguments in patent owner's response).

Based on the complete record, we determine that Petitioner has shown sufficiently that FIPA97 teaches "triggers" recited in claim 1.

In sum, based on the complete record, we determine that Petitioner has demonstrated sufficiently that FIPA97 teaches the claimed "expandable, platform-independent, inter-agent language" including "a layer of conversational protocol" and "a content layer," notwithstanding these arguments from Patent Owner.

d. Receiving a Request for Service in an Arbitrarily Complex Goal Expression

The second step of claim 1 recites "receiving a request for service as a base goal in the inter-agent language, in the form of an arbitrarily complex goal expression." Ex. 1001, 29:25–27. Petitioner relies on Kiss to teach the "receiving a request for service" step and combines Kiss's teaching with FIPA97's ACL to teach "a request for service . . . in the form of an arbitrarily complex goal expression." Pet. 43–47.

(i) Receiving a Request for Service

Petitioner asserts that Kiss teaches "receiving a request for service" because the reference describes that a "user agent" receives a "query" from a user, and then "parses the user inquiry and directs the parsed inquiry to a metaagent 119 for action." Pet. 44 (citing Ex. 1005, 8:28–34). Petitioner points to the example process depicted in Figures 8–20 of Kiss as showing how a "problem presented by a user is solved through distributed inferencing." *Id.* (citing Ex. 1005, 12:21–22). Petitioner asserts that the initial request illustrated in Figure 8 (not reproduced herein) "when the user asks of the user agent 705 'what is the effect of increasing sales by 20%'? (FIG.8)" is a "base goal" because it is the basic request initiated by the user that inspires a number of additional, more particular requests in order to be satisfied. *Id.* at 44–45 (citing Ex. 1005, 12:23–26, Fig. 8).

(ii) Arbitrarily Complex Goal Expression

As discussed above in Section III.B. and the Institution Decision, based on the definitions provided in the '115 patent, we construe "arbitrarily complex goal expression" to mean "a goal expressed in a language or syntax

that allows an expression, when appropriate or when desired, that expresses multiple sub-goals and can potentially include more than one type of logical connector (e.g., AND, OR, NOT), and/or more than one level of logical nesting (e.g., use of parentheses), or the substantive equivalent, although not every goal is itself necessarily complex." Inst. Dec. 35–37. Petitioner argues that this definition of "arbitrarily complex goal expression" does not require multiple sub-goals to be expressed within the request, but instead requires only that the goal be expressed in a language "that *allows* the expression of multiple sub-goals" Pet. 45.

Petitioner asserts that FIPA ACL allows the expression of multiple sub-goals, which can potentially include more than one type of logical connector and/or more than one level of logical nesting (e.g., use of parentheses), or the substantive equivalent, because FIPA97 "allows the construction of s-expressions of arbitrary depth and complexity." *Id.* (citing Ex. 1007, 15). Petitioner argues that FIPA97 also discloses complex "goal expressions" that "express multiple sub-goals" and which may also include "logical nesting" using parentheses. *Id.* at 46 (citing Ex. 1007, 40, 41).

Petitioner contends that, in the combined system of Kiss and FIPA97, the request discussed above— "What is the effect of increasing sales by 20%?"—is an "arbitrary complex goal expression" because it is a goal expressed in FIPA ACL. *Id.*

Patent Owner does not specifically dispute that Kiss teaches this "receiving a request for service" limitation. *See generally* PO Resp. Based on the complete record and for the reasons explained by Petitioner, we are persuaded that Petitioner has demonstrated sufficiently that Kiss teaches

"receiving a request for service as a base goal in the inter-agent language, in the form of an arbitrarily complex goal expression," as recited in claim 1.³¹

e. Dynamically Interpreting the Arbitrarily Complex Goal Expression

Claim 1 recites "dynamically interpreting the arbitrarily complex goal expression," the act of interpreting comprising "generating one or more sub-goals expressed in the inter-agent language," "constructing a goal satisfaction plan," and "dispatching each of the sub-goals to a selected client agent for performance." Ex. 1001, 29:28–44.

Petitioner contends that Kiss teaches "dynamically interpreting the arbitrarily complex goal expression," as recited in claim 1. Pet. 47–49. Petitioner argues

Kiss discloses that, in response to a request for service, the "meta agent 119 formulates a goal statement for the problem-solving phase of the process, then formulates a solution plan for the problem" and "dynamically assesses the problem and its solution states (between users and the knowledge agents 121), divides the problem, and assigns the appropriate knowledge agents 121 to work on the solution."

Id. at 47–48 (emphasis added) (citing Ex. 1005, 8:32–48).

In addition, Petitioner explains how Kiss interprets the exemplary "arbitrary complex goal expression" discussed above—"What is the effect of increasing sales by 20%?"—including the meta agent formulating a plan to respond to the request, identifying other agents and knowledge modules that could assist in the response, and doing both dynamically as additional

³¹ We also find that Patent Owner has waived any argument directed to this claim limitation. *See* Paper 16, 7.

information is obtained. *Id.* at 48 (citing Ex. 1005, 12:21–14:29, Figs. 8–20). Petitioner further provides a detailed description of how this example goal expression is dynamically interpreted in Kiss. *Id.* at 48–49 (citing Ex. 1005, 12:29–14:30, Figs. 9–11, 13–20).

Patent Owner does not specifically dispute that Kiss teaches this "dynamically interpreting the arbitrarily complex goal expression" limitation. *See generally* PO Resp. Based on the complete record and for the reasons explained by Petitioner, we are persuaded that Petitioner has demonstrated sufficiently that Kiss teaches "dynamically interpreting the arbitrarily complex goal expression," as recited in claim 1.³²

f. Generating One or More Sub Goals Expressed in the Inter-agent Language

Petitioner contends that Kiss teaches "generating one or more sub-goals expressed in the inter-agent language," as recited in claim 1, because Kiss discloses, in the example "What is the effect of increasing sales by 20%?" discussed above, that the process of responding to the user's request includes several additional requests for service ("sub-goals") to various agents, including two sub-requests each from the sales agent and the meta agent, and three sub-requests from the production agent, where each of the sub-requests is made in FIPA ACL. Pet. 49–50 (citing Ex. 1005, 12:54–56, 13:25–27, 13:37–39, 13:56–57, 14:3–5). According Petitioner, each of these sub-requests is a "sub-goal" because each is a subset of the process of

³² We also find that Patent Owner has waived any argument directed to this claim limitation. *See* Paper 16, 7.

responding to the user's base request—"base goal"—of "what is the effect of increasing sales by 20%?" *Id.* at 50. Petitioner also argues that Kiss's metaagent is capable of "formulating a sub-problem query." *Id.* (citing Ex. 1005, 11:15–16).

Patent Owner does not specifically dispute that Kiss teaches this "generating one or more sub-goals expressed in the inter-agent language" limitation. *See generally* PO Resp. Based on the complete record and for the reasons explained by Petitioner, we are persuaded that Petitioner has demonstrated sufficiently that Kiss teaches "generating one or more sub-goals expressed in the inter-agent language," as recited in claim 1.³³

g. Constructing a Goal Satisfaction Plan Including Delegation of Sub-goal Requests

Claim 1 recites "constructing a goal satisfaction plan," the goal satisfaction plan including "a suitable delegation of sub-goal requests" and "dispatching each of the sub-goals to a selected client agent for performance." Ex. 1001, 29:32–43. Petitioner contends that Kiss teaches each of these limitations. Pet. 50–54.

(i) Goal Satisfaction Plan

As discussed above in Section III.B.1., we construe the term "a goal satisfaction plan" to mean "a plan for satisfying a goal" for this Final Written Decision.

³³ We also find that Patent Owner has waived any argument directed to this claim limitation. *See* Paper 16, 7.

Petitioner asserts that Kiss teaches "constructing a goal satisfaction plan" because Kiss describes that the meta-agent "formulates a goal statement for the problem-solving phase of the process," then "formulates a solution plan for the problem." Pet. 50 (citing Ex. 1005, 8:33–34, 5:30–64, 12:25–40, Figs. 8–20). Petitioner contends that Figures 8–20 of Kiss illustrate adding tasks to an agenda, i.e., constructing a plan, to satisfy the user request (i.e., a "goal") "what is the effect of increasing sales by 20%?" *Id.* at 50–51 (citing Ex. 1005, 13:27–29, Figs. 8–20).

Patent Owner contends that Kiss does not teach the claim "goal satisfaction plan" because Kiss does not disclose "the use of any reasoning, optimization, or taking into account any advice parameters or constraints." PO Resp. 89. Patent Owner also argues that Kiss "does not have the capability of formulating an 'optimal or near-optimal' 'goal satisfaction plan' utilizing reasoning as described in the '115 patent." *Id.* at 91 (citing Ex. 2032 ¶ 141). These arguments are predicated on Patent Owner's proposed construction of "goal satisfaction plan" to mean "a plan for the satisfaction of a complex goal expression in an optimal or near-optimal manner that is consistent with any advice parameters or constraints." *See id.* at 28. As discussed above in Section III.B.1., we disagree with Patent Owner that the claim term "goal satisfaction plan" is limited as Patent Owner contends. Thus, for the reasons explained above in Section III.B.1., we disagree with Patent Owner's argument that Kiss does not disclose the "goal satisfaction plan" recited in claim 1.

Based on the complete record, we determine that Petitioner has shown sufficiently that Kiss teaches "constructing a goal satisfaction plan," as recited in claim 1.

(ii) Delegation of Sub-goal Requests Using Reasoning

Claim 1 recites that "the goal satisfaction includes: a suitable delegation of sub-goal requests to best complete the requested service request—by using reasoning that includes one or more of domain-independent coordination strategies, domain-specific reasoning, and application-specific reasoning comprising rules and learning algorithms." Ex. 1001, 29:32–39.

(1) Delegation of Sub-goal Requests

Petitioner asserts that Kiss teaches a meta-agent that makes "a suitable delegation of sub-goal requests to best complete the requested service request," as recited in claim 1, because Kiss identifies and queries various agents (e.g., sales agent, production agent) "who best to respond" to new sub-requests for specific information as they arrive. Pet. 51 (citing Ex. 1005, 12:21–14:30, Figs. 8–20). Petitioner contends that in Kiss, the meta-agent "contains knowledge of problem solving methodologies and distributed inferencing procedures" and is further responsible for allocating "tasks to the knowledge agent layer." *Id.* (citing Ex. 1005, 5:24–27, 3:26–27). Petitioner asserts that Kiss's meta-agent uses these methodologies in conjunction with the agent registry "to dynamically bring available knowledge resources together" ("suitable delegation") by identifying "those

other resources capable of furthering the problem-solving process" ("best complete the requested service request"). *Id.* (citing Ex. 1005, 5:27–29).

Patent Owner contends that Kiss does not teach "optimization of any kind." PO Resp. 89. Patent Owner asserts that Kiss's meta agent employs a trial and error method—it jumps into "executing the solution plan even before the plan is complete" and when errors are encountered, it backtracks or takes a new action. *Id.* at 90–91 (citing Ex. 1005 5:39–46). Patent Owner argues that Kiss is "forced" to go through this trial-and-error process because it does not have the capability of formulating an "optimal or near-optimal" "goal satisfaction plan." *Id.* at 91.

As discussed above in Section III.B., claim 1 does not recite an "optimal or near-optimal" "goal satisfaction plan." Instead, claim 1 recites "a suitable delegation of sub-goal requests to *best complete* the requested service request," which may relate to the "optimal or near-optimal" limiting feature argued by Patent Owner. As discussed in the same section, Patent Owner asserts that the term "optimal" and "near optimal" has a well-established meaning in the context of computer engineering, citing a technical dictionary, which defines "optimization" as "[t]he process of finding *the best solution* to some problem, where 'best' accords to prestated criteria." PO Sur-reply 6 (emphasis added) (citing Ex. 2078, 3). Thus, contrary to Patent Owner's argument, the trial and error process of Kiss is a "process of finding *the best solution*" to a problem under Patent Owner's definition of "optimization." *See* Ex. 1005, 5:21–29 ("The meta agent 119 contains knowledge of how to dynamically bring available knowledge resources together as and when needed to provide a response to the

inquiry."), 5:32–45 ("The meta agent 119 is responsible for formulating a dynamic "solution plan" for the distributed inferencing to be performed by the system 100, and allocates tasks to the knowledge agent layer 109 in furtherance of the solution plan. The planning capability of the meta agent 119 includes the ability to formulate parallel sub-plans and perform iterative and recursive procedures. . . . The meta agent 119 is capable of backtracking or replanning to permit escape during plan execution from dead-end or otherwise unproductive search paths." (emphases added)); Pet. 51 (citing Ex. 1005, 5:24–29).

We note that claim 1 does *not* recite "to *best complete* the requested service request *at the very first try.*" Thus, Kiss's formulation of a dynamic "solution plan" (and allocation of tasks) that includes "sub-plans" to perform the trial and error process for finding the best solution to a problem satisfies "delegation of sub-goal requests to *best complete* the requested service request," as recited in claim 1.

Patent Owner also argues that it explained during prosecution how the facilitating engine is able to use reasoning to delegate the sub-goals to service providing agents in such a way as "to best complete the requested service request," as follows:

For example, assume that several agents are able to roast coffee. The facilitating engine is able to use reasoning to delegate the sub-goal task of roasting coffee to the service-providing agent that can roast beans in the least amount of time because the facilitating engine has reasoned that *the least amount of time* taken to make coffee is *the best way* to accomplish the base goal of making coffee.

PO Resp. 90 (citing Ex. 1002, 173).

In response, Petitioner argues that Kiss similarly optimizes its solution plan based on time. Pet. Reply 49–50. Petitioner asserts that Kiss explains that as part of its matchmaking functionality (which is utilized in the solution plan), the agent service layer will create "mappings for each knowledge module 123 relating the capabilities to interests" and that these mappings are used "to optimize problem solutions." *Id.* at 49 (citing Ex. 1005, 7:8–11). According to Petitioner, Kiss describes that when utilizing "real time" inferencing, the meta-agent "may deactivate the knowledge agent whose responses do not meet time delay" or prioritize "knowledge agents that have a history of rapid response or that can tailor their problem solving to real time." *Id.* at 49–50 (citing Ex. 1005, 7:65–84). We agree with Petitioner that Kiss's delegation and prioritization of agents based on their speed of response satisfies "delegation of sub-goal requests to best complete the requested service request," as recited in claim 1.

(2) Using Reasoning

Claim 1 recites that "a suitable delegation of sub-goal requests" is accomplished "by using reasoning that includes one or more of domain-independent coordination strategies, domain-specific reasoning, and application-specific reasoning comprising rules and learning algorithms." Petitioner asserts that the '115 patent describes speech recognition, natural language processing, and email as "domain-independent technologies," and travel planning and reservations agents as "domain specific." Pet. 52 (citing Ex. 1001, 6:51–55).

Citing the testimony of Dr. Lieberman, Petitioner argues that the operations disclosed in Kiss with respect to Figures 8–20 represent

"reasoning that includes one or more of domain-independent coordination strategies" because the meta agent, by identifying and querying several different specialized (i.e., domain-specific) agents, is carrying out a strategy that is domain independent (i.e., is not limited to a particular area of knowledge but instead seeks information regarding sales, production, marketing, facilities, and materials) and coordinates the action of those different domain-specific agents across several domains. Pet. 52 (citing Ex. 1003 ¶¶ 331–332). Petitioner argues that Kiss's meta-agent can employ a distributed inferencing scheme that "assembles a problem-specific rule network as a distributed object under control by a meta agent." *Id.* at 52–53 (citing Ex. 1005, 7:21–26). Petitioner contends that application of such a problem-specific set of rules to a request constitutes both "domain-specific reasoning" (because the problem is the domain) and "application-specific reasoning" (because the problem is the application). *Id.* at 53 (citing Ex. 1003 ¶ 333).

We note that the portion of Kiss cited by Petitioner describes that distributed inferencing schemes are based on the use of "first-order logic." Ex. 1005, 7:21–23. The same paragraph also describes using a "theorem-proving engine." *Id.* at 7:26–28. We note that both "first-order logic" and "theorem-proving engine" may be considered "domain-independent technologies," similar to speech recognition and natural language processing technologies described in the '115 patent.

Patent Owner contends that the "solution plan" of Kiss is not constructed by "using reasoning" because Kiss's inferencing schemes are used only "[a]fter the solution plan is formulated . . . to perform the search

and execution phases." PO Resp. 89 (citing Ex. 1005, 8:58–60). In response, Petitioner asserts that in the Petition it argued that it would have been obvious to utilize inferencing strategies when constructing the goal satisfaction plan. Pet. Reply 48 (citing Pet. 53). Thus, Patent Owner's argument is inapposite because it does not address the combination proposed by Petitioner. *See ClassCo, Inc. v. Apple, Inc.*, 838 F.3d 1214, 1219 (Fed. Cir. 2016) ("*KSR* does not require that a combination only unite old elements without changing their respective functions.").

As Petitioner also persuasively argues, Petitioner in the Petition additionally relies on several other ways in which Kiss utilizes reasoning to construct its solution plan, such as "problem solving methodologies and distributed inferencing procedures," how the meta-agent "assigns the appropriate knowledge agents 121 to work on the solution," and how the meta-agent "executes the solution plan by maintaining an agenda, commitment table, task queue, knowledge manager or equivalent dynamic control service." Pet. Reply 48 (citing Pet. 50–51; Ex. 1003 ¶¶ 322–325, 331–335). Petitioner further argues that Kiss's "iterative and recursive" planning is another example of how reasoning is used to construct the solution plan of Kiss. *Id.* (citing Pet. 50; Ex. 1003 ¶ 322).

Based on the complete record, we determine that Petitioner has shown sufficiently that Kiss teaches "a suitable delegation of sub-goal requests to best complete the requested service request—by using reasoning that includes one or more of domain-independent coordination strategies, domain-specific reasoning, and application-specific reasoning comprising

rules and learning algorithms," as recited in claim 1, notwithstanding the arguments by Patent Owner.

h. Dispatching Each of the Sub-goals

Claim 1 recites "dispatching each of the sub-goals to a selected client agent for performance, based on a match between the sub-goal being dispatched and the registered functional capabilities of the selected client agent." Ex. 1001, 29:32–43.

Petitioner asserts that in Kiss

the meta agent dispatches queries ("sub-goals") to various specialized agents based on a determination that the targeted agent possesses a knowledge module appropriate for the query ("based on a match between the sub-goal being dispatched and the registered functional capabilities of the selected client agent.")

Pet. 54 (citing Ex. 1005, 12:21–14:29, Figs. 8–20). Petitioner argues that Kiss's specialized agents are not facilitators (and, therefore, are "client agents") because they are not responsible for matching requests, from users and agents, with descriptions of the capabilities of other agents. *Id.* (citing Ex. 1001, 4:64–66, 6:41–43).

Patent Owner does not specifically dispute that Kiss teaches this "dispatching each of the sub-goals" limitation. *See generally* PO Resp. Based on the complete record and for the reasons explained by Petitioner, we are persuaded that Petitioner has demonstrated sufficiently that Kiss teaches "dispatching each of the sub-goals to a selected client agent for performance, based on a match between the sub-goal being dispatched and

the registered functional capabilities of the selected client agent," as recited in claim 1.34

i. Conclusion

In consideration of the foregoing and based on the complete record, we are persuaded by Petitioner's arguments and evidence, notwithstanding Patent Owner's arguments, addressed above. Having weighed each of the *Graham* factors, including the scope and content of the prior art, the differences between the prior art and the challenged claim, and the objective evidence of nonobviousness, we determine that Petitioner has demonstrated by a preponderance of the evidence that claim 1 is unpatentable under 35 U.S.C. § 103(a) as obvious over the combination of Kiss and FIPA97.

3. Dependent Clam 4

Claim 4 depends form claim 1 and further recites "further including the act of deactivating a specific client agent no longer available to provide services by deleting the registration of the specific client agent." Ex. 1001, 29:64–67. Petitioner asserts that the combination of Kiss and FIPA97 teaches the additionally recited limitation of claim 4. Pet. 54–55. In addition, Petitioner contends that the subject matter of claim 4 would have been obvious over the combination of Kiss and FIPA97. *Id.* at 54–56.

Specifically, Petitioner asserts that Kiss discloses that the meta-agent "may deactivate the knowledge agent whose responses do not meet time

³⁴ We also find that Patent Owner has waived any argument directed to this claim limitation. *See* Paper 16, 7.

delay and gather partial information from the **incomplete knowledge agent**." *Id.* at 54–55 (citing Ex. 1005, 7:67–8:2). According to Petitioner,
Kiss also discloses an "agent service layer [that] provides services for **maintaining a registry of agents** in the system . . . [that] . . . identifies each
agent's capabilities and interests." *Id.* at 55 (citing Ex. 1005, 3:36–42).
Citing the testimony of Dr. Lieberman, Petitioner asserts that a person of
ordinary skill in the art would understand "maintaining" the registry of Kiss
included the ability to ensure the registry accurately reflects the agent
population in the system. *Id.* (citing Ex. 1003 ¶ 353).

In addition, Petition contends that FIPA97 also discloses deactivating agents, such as by removing them from an Agent Domain in which they are Active, and that such deactivation comprises deregistering the agent, which includes the deletion of that agent's entry in the Directory Facilitator. *Id.* (citing Ex. 1006, 19–20, Fig. 5; Ex. 1003 ¶ 354).

Citing the testimony of Dr. Lieberman, Petitioner argues that the proposed combination of Kiss and FIPA97 teaches "the act of deactivating a specific client agent no longer available to provide services," such as time delay-based services, "by deleting the registration of the specific client agent," as recited in claim 4. *Id.* (citing Ex. 1003 ¶ 355).

Petitioner also argues that the subject matter of claim 4 would have been obvious over the combination of Kiss and FIPA97 because Kiss discloses both the maintenance of an agent registry and the deactivation of unsatisfactory agents, and FIPA97 discloses deleting the registry information of agents removed from a particular domain. *Id.* at 55–56. Citing the testimony of Dr. Lieberman, Petitioner argues that a person of ordinary skill

FIPA97 to obtain the subject matter of "deactivating a specific client agent no longer available to provide services by deleting the registration of the specific client agent," as recited in claim 4, to ensure the system includes only those agents able to provide a satisfactory level of operability so that the system would operate in an efficient and useful manner. *Id.* at 56 (citing Ex. 1003 ¶ 356). Petitioner additionally argues the fact that Kiss discloses deactivating agents operating in a sub-optimal manner would also have suggested including this functionality because agents unable to provide services are not useful in the system, unnecessary and potentially wasteful of system resources. *Id.* (citing Ex. 1003 ¶ 357).

Patent Owner does not respond separately to Petitioner's challenge to dependent claim 4 beyond Patent Owner's arguments advanced with respect to claim 1 discussed above. *See* PO Resp. 108–114.

Based on the complete record and for the reasons explained by Petitioner, we determine that Petitioner has demonstrated by a preponderance of the evidence that claim 4 is unpatentable under 35 U.S.C. § 103(a) over the combination of Kiss and FIPA97.³⁵

4. Dependent Clam 5

Claim 5 depends form claim 1 and further recites "further comprising the act of providing an agent registry data structure." Ex. 1001, 30:1–3.

³⁵ We also find that Patent Owner has waived any argument directed to claim 4 aside from contesting the unpatentability of claim 1, from which claim 4 depends, over the combination of Kiss and FIPA97. *See* Paper 16, 7.

Petitioner asserts that Kiss teaches an "agent registry" which contains information about the capabilities of each registered agent. Pet. 56 (citing Ex. 1005, 6:66–7:2). According to Petitioner, the agent service layer of Kiss contains "semantics" where each agent registers its "capabilities and interests." *Id.* (citing Ex. 1005, 11:65–12:20).

Table 1 of Kiss is reproduced below.

TABLE 1 Interests and Capabilities of Knowledge Modules			
Sales 711	Number of units	Market price	
	Price per unit Total revenue	Cost per unit	
Production 715	Cost per unit	Number of units Cost of production lines Material costs Labor costs	
Marketing 719	Market price	Number of units	
Materials 723	Material cost	Material type	
Facilities 727	Cost of production lines	Number of production lines	
Labor 731	Cost of labor	Number of workers	

Ex. 1005, 12:1–18. Table 1 of Kiss illustrates the capabilities and interests of each of the knowledge modules listed in the first column of the table. *Id.* at 11:65–67.

Petitioner asserts that an agent's capabilities and interest are stored and organized in the manner depicted in Table 1 of Kiss. Pet. 56 (citing Ex. 1005, 11:65–12:20). Citing the testimony of Dr. Lieberman, Petitioner contends that a person of ordinary skill in the art would have understood that

the agent registry of Kiss is stored in a data structure because Kiss discloses a computerized system. *Id.* (citing Ex. 1003 ¶¶ 359–360).

In addition, Petitioner asserts that it would have been obvious to include such a structure in the system of Kiss because Kiss discloses that the registry maintains information about the capabilities, interests, and attributes associated with agents in the system (*id.* at 57–58 (citing Ex. 1005, 6:66–7:2)) and because Kiss also discloses that other information used in the system is stored in various types of data structures, such as a data base, software library, or software object (*id.* at 58 (citing Ex. 1005, 6:55–61)). Citing a technical encyclopedia, Petitioner argues that a person of ordinary skill in the art would have understood that registry information would efficiently be stored in a known type of data structure such as a database, software library, or software object. *Id.* (citing Ex. 1034, 133).

Citing the testimony of Dr. Lieberman, Petitioner asserts that a person of ordinary skill in the art would have been motivated to employ such a conventional structure because they were well-understood and believed to be reliable. *Id.* (citing Ex. $1003 \, \P \, 361$). Petitioner also argues that "it would have been common sense to store the agent capability information in an orderly manner that permitted ease of access, which would necessarily mean storing the information in a data structure, such as a database, software library, or software object." *Id.* (citing Ex. $1003 \, \P \, 361$).

In the Patent Owner Response, Patent Owner asserts that the disclosures of Kiss cited by Petitioner, including Table 1, do not show a data structure. PO Resp. 108–109. Patent Owner also argues that Petitioner does

not identify any reason why a person of ordinary skill in the art would have added memory required for data storage to Kiss's system. *Id.* at 110.

In its Reply, Petitioner asserts that Kiss explains that "the agent service layer 735 accesses the information stored in Table I to identity the agent that has registered the capability of providing that information" and, therefore, Table 1 is part of the "agent registry" of Kiss. Pet. Reply 75 (citing Ex. 1005, 13:29–32). Petitioner also argues that a data structure was a well-known and conventional technology, citing a technical encyclopedia, as well as the deposition testimony of Patent Owner's declarant, Dr. Medvidovic. *Id.* (citing Ex. 1129, 136:13–17 ("A data structure . . . a structure within a program that contains and organizes some set of data in a particular way."), 136:13–137:6; Ex. 1133, 459 (defining a "table" as a "data structure")). Petitioner asserts that a person of ordinary skill in the art would have employed a conventional data structure in part because they were wellunderstood and reliable; and because it would have been common sense to "store the agent capability information in an orderly manner." *Id.* (citing Pet. 58; Ex. 1003 ¶ 361; Ex. 1129, 136:13–137:6 (explaining that data structures were conventional and well-known for these types of implementations)).

In the Patent Owner Sur-reply, Patent Owner does not dispute Petitioner's argument and evidence in the Reply, but instead argues that "Petitioner seeks to fix its lack of argument in the Petition by introducing new arguments on Reply," which should be rejected as improper new material. PO Sur-reply 65. We disagree with Patent Owner's argument because, as discussed above, Petitioner's argument and evidence presented

in the Reply are directly responsive to Patent Owner's arguments raised in the Patent Owner Response. *See Apple Inc. v. Andrea Elecs. Corp.*, 949 F.3d 697, 706–07 (Fed. Cir. 2020) ("[T]he petitioner in an inter partes review proceeding may introduce new evidence after the petition stage if the evidence is a legitimate reply to evidence introduced by the patent owner." (quoting *Anacor Pharm., Inc. v. Iancu*, 889 F.3d 1372, 1380–81 (Fed. Cir. 2018)); *Belden Inc. v. Berk-Tek LLC*, 804 F.3d 1064, 1078–80 (Fed. Cir. 2015) (explaining that the Board may rely on new evidence submitted with a reply because that evidence was responsive to the arguments in patent owner's response).

Based on the complete record and for the reasons explained by Petitioner, we determine that Petitioner has demonstrated by a preponderance of the evidence that claim 5 is unpatentable under 35 U.S.C. § 103(a) over the combination of Kiss and FIPA97.

5. Dependent Clams 6–10

Claims 6–10 each depend from claim 5 and further recite that the recited "agent registry data structure" includes various items, such as "at least one symbolic name for each active agent" (claim 6), "at least one data declaration for each active agent" (claim 7), "at least one trigger declaration for one active agent" (claim 8), "at least one task declaration, and process characteristics for each active agent" (claim 9), and "at least one process characteristic for each active agent" (claim 10). Ex. 1001, 30:4–19.

a. Claims 6 and 7

Similar to its analysis of claim 5, Petitioner relies on Table 1 and related disclosures of Kiss to teach the additionally recited limitations of dependent claims 6 and 7. *See* Pet. 58–60. For example, regarding claim 6, Petitioner contends that Kiss teaches "at least one symbolic name for each active agent" recited in claim 6 because Kiss's Table 1 shows a "data structure associated" with the agent registry, which includes a "symbolic name," such as "Labor" or "Marketing." *Id.* at 58 (citing Ex. 1005, 3:40–43, 12:1–18). With respect to claim 7, Petitioner asserts that Kiss's agent registry includes a "data declaration" in the form of the "Interests" column shown in Table 1 of Kiss. *Id.* at 59 (citing Ex. 1005, 12:1–18).

Patent Owner disputes Petitioner's argument and evidence in the Patent Owner Response (PO Resp. 110–111) and Petitioner in its Reply essentially repeats its arguments presented in the Petition (Pet. Reply 75–76). No new evidence is introduced in the Reply with respect to claims 6 and 7. *See id*.

Based on the complete record and for the reasons explained by Petitioner, we determine that Petitioner has demonstrated by a preponderance of the evidence that claims 6 and 7 are unpatentable under 35 U.S.C. § 103(a) over the combination of Kiss and FIPA97.

b. Claims 9 and 10

With respect to claims 9 and 10, Petitioner relies on the combination of Kiss and FIPA97. Petitioner argues that Kiss's agent registry includes a "task declaration for each active agent," as shown in the "Capabilities" column of Kiss's Table 1, with each entry characterizing the tasks agents are

capable of performing. Pet. 61 (citing Ex. 1005, 12:1–18 (e.g., showing "Marketing" agent is capable of providing "Market Price"); Ex. 1003 ¶ 379).

Petitioner further asserts that FIPA97 teaches "process characteristic(s) for each active agent" recited in claims 9 and 10 because when registering an agent in FIPA97, various "process characteristics" may be included in the registration—e.g., FIPA97 discloses the Agent Management Object "fipa-man-df-agent-description" which contains a registry parameter "interactionprotocols" which "[c]haracterises the protocols supported by the agent [which] can include both standardized and/or non-standard protocols." *Id.* at 62 (citing Ex. 1006, 33). Citing the testimony of Dr. Lieberman, Petitioner argues that the "protocols" refine how the interactions with a given agent are conducted and that in the combined system the features of both agent registries would be combined. *Id.* (citing Ex. 1003 ¶¶ 217–219, 380).

In the Patent Owner Response, Patent Owner asserts that Petitioner does not explain adequately why a person of ordinary skill in the art would have been motivated to incorporate this alleged feature of FIPA97 into a data structure, which Petitioner alleges to be disclosed in Kiss. PO Resp. 113. We agree with Patent Owner's argument.

As discussed above, Petitioner relies on Kiss's agent registry to teach the "agent registry data structure" recited in claims 5, 9, and 10. For claims 9 and 10, Petitioner proposes to combine FIPA97's Agent Management Object with Kiss's agent registry data structure or combine the registry of FIPA97 with the registry of Kiss. *See* Pet. 62. In Section III.H.1. above, we discussed Petitioner's proposed combination of Kiss's electronic agents and

their general functions and operations, including agent collaboration, agent registry, and inter-agent messaging, with FIPA97's ACL. But, here, Petitioner is proposing a different (or additional) combination—that is, combining the registry of Kiss with the registry of FIPA97, or more specifically, combining Kiss's agent registry data structure with FIPA97's Agent Management Object.

An obviousness determination requires finding "both 'that a skilled artisan would have been motivated to combine the teachings of the prior art references to achieve the claimed invention, and that the skilled artisan would have had a reasonable expectation of success in doing so." Intelligent Bio-Sys., Inc. v. Illumina Cambridge Ltd., 821 F.3d 1359, 1367– 68 (Fed. Cir. 2016) (citation omitted); see KSR, 550 U.S. at 418 (for an obviousness analysis, "it can be important to identify a reason that would have prompted a person of ordinary skill in the relevant field to combine the elements in the way the claimed new invention does"). Further, an assertion of obviousness "cannot be sustained by mere conclusory statements; instead, there must be some articulated reasoning with some rational underpinning to support the legal conclusion of obviousness." KSR, 550 U.S. at 418 (quoting In re Kahn, 441 F.3d 977, 988 (Fed. Cir. 2006)); accord In re NuVasive, *Inc.*, 842 F.3d 1376, 1383 (Fed. Cir. 2016) (stating that "conclusory" statements" amount to an "insufficient articulation[] of motivation to combine"; "instead, the finding must be supported by a 'reasoned explanation" (citation omitted)); Magnum Oil Tools Int'l, 829 F.3d at 1380 ("To satisfy its burden of proving obviousness, a petitioner cannot employ mere conclusory statements. The petitioner must instead articulate specific

reasoning, based on evidence of record, to support the legal conclusion of obviousness.").

Here, with respect to claims 9 and 10, Petitioner does not discuss in the Petition *how* or *why* Kiss's agent registry data structure would have been combined with FIPA97's Agent Management Object to obtain the subject matter of claims 9 and 10. *See* Pet. 61–12; *see also TriVascular, Inc. v. Samuels*, 812 F.3d 1056, 1066 (Fed. Cir. 2016) ("Although the *KSR* test is flexible, the Board 'must still be careful not to allow hindsight reconstruction of references . . . without any explanation as to *how* or *why* the references would be combined to produce the claimed invention.""). In the Reply, Petitioner also does not discuss the reasons to combine Kiss and FIPA97 in the manner proposed for claims 9 and 10. *See* Pet. Reply 77–78.

Accordingly, based on the complete record, we determine Petitioner does not demonstrate by a preponderance of the evidence that the subject matter of claims 9 and 10 would have been obvious over the proposed combination of Kiss and FIPA97.

c. Claim 8

For claim 8, Petitioner argues that FIPA97 teaches "at least one trigger declaration for one active agent" because FIPA97 discloses a FIPA-AVEB-Request-Notification contract-net used to get notifications about the status and services of a specific program, and will automatically terminate after the program's end time. Pet. 60 (citing Ex. 1011, 10, 11, 21; EX1007, 46). According to Petitioner, FIPA97 also discloses that the Control Agent of that contract-net will set a trigger with a precondition ("preconditions2") within the GA ("agent registry") and that the GA will then monitor for

changes over a given time period ("Deadline") and inform the CA of any changes that conform to the precondition within that period. *Id.* at 60–61 (citing Ex. 1011, 21). Petitioner argues that FIPA97, therefore, teaches a "trigger declaration" ("preconditions2") set within the "agent registry" ("GA") that relates to the status of "one active agent." *Id.* at 61.

In the Patent Owner Response, Patent Owner contends that "Petitioner offers no explanation whatsoever as to why a person of ordinary skill in the art would be motivated to incorporate this alleged feature of *FIPA97* into a data structure which Petitioner alleges to be disclosed in *Kiss* (since Claim 8 depends on Claim 5)." PO Resp. 112.

In the Petitioner Reply, Petitioner asserts that the Petition explains that the "administrative functionality" and "exemplary practices" of FIPA97 would be combined with Kiss (Pet. Reply 76 (citing Pet. 28)) and further explains that "[a] Skilled Artisan would also have been motivated" to make this combination due to a myriad of reasons, including that:

Kiss, must use a <u>common communications protocol</u> . . . and related management functionality, EX1020, 2; EX1046, 50, and therefore would have been motivated to consider and employ one of the available <u>inter-agent communications languages</u> and its related functionality, and because doing so would have been a convenient and efficient way to <u>facilitate effective communication</u> between agents. EX1003,¶223.

(id. at 77 (underlined emphases added) (citing Pet. 29–30)).

The reasons to combine cited in the Petitioner Reply, however, are directed to Petitioner's proposed combination of Kiss's electronic agents and their general functions and operations, including agent collaboration, agent registry, and inter-agent messaging, with

FIPA97's ACL and related functionality "because doing so would have been a convenient and efficient way to facilitate effective communication between agents." *See* Pet. 29–30; *see also* § III.H.1. *supra*. But, here, with respect to claim 8, Petitioner is proposing a different (or additional) combination—that is, combining the registry of Kiss with the registry of FIPA97, or more specifically, combining Kiss's agent registry data structure with the "trigger declaration" ("preconditions2") set within FIPA97's "agent registry" ("GA"). Petitioner does not discuss adequately in the Petition (or the Petitioner Reply) *how* or *why* Kiss's agent registry data structure would have been combined with FIPA97's "trigger declaration" set within its "agent registry" ("GA") to obtain the subject matter of claim 8. *See TriVascular*, 812 F.3d at 1066.

Accordingly, based on the complete record, we determine Petitioner does not demonstrate by a preponderance of the evidence that the subject matter of claim 8 would have been obvious over the proposed combination of Kiss and FIPA97.

6. Dependent Clam 15

Claim 15 depends from claim 1 and further recites "wherein the base goal requires setting a trigger having conditional functionality and consequential functionality." Ex. 1001, 30:43–45. Citing a technical dictionary, Petitioner asserts that the ordinary meaning of "conditional functionality" is taking an action based on a conditional determination that an action should take place as the result of the occurrence of a given precondition. Pet. 62 (citing Ex. 1034, 112, 244). As discussed above in

Section III.H.2(vi)(1)., we construe "trigger" to mean a general mechanism for requesting some action be taken when one or more conditions is met" for this Final Written Decision.

Petitioner asserts that Kiss illustrates in Figures 9–20 how the "base goal" in that example—"What is the effect of increasing sales by 20%" – requires "setting a trigger having conditional functionality and consequential functionality." Pet. 63. According to Petitioner, in that example, the production agent is asked to verify that the cost per unit does not exceed a certain level, and the production agent responds by asking the meta-agent to provide production line cost information, which causes the meta-agent to create a task on the agenda and to relay the request to the facilities agent. *Id.* (citing Ex. 1005, 13:22–47). Once the facilities agent responds with the request information, the meta-agent clears the task from the agenda and passes the requested information to the production agent. *Id.* (citing Ex. 1005, 13:48–55).

Petitioner argues that this functionality includes setting a "trigger" having "conditional functionality and consequential functionality." *Id.*According to Petitioner, the triggering event is the return of production line cost information from the facilities agent and that trigger has "conditional functionality" because a person of ordinary skill in the art would have understood that the meta-agent would not remove the task from the agenda until that triggering event occurs. *Id.* Petitioner further argues, that trigger also has "consequential functionality" because it will cause the meta-agent to pass the production line cost information to the production agent. *Id.* (citing Ex. 1003 ¶ 413).

In addition, Petitioner asserts FIPA97 also teaches the additionally recited limitation of claim 15 because FIPA97 discloses several performatives that have "trigger" functionality: Accept-proposal, Agree, Cfp, Propose, Request-when, Request-whenever, and Subscribe. *Id.* at 63– 64 (citing Ex. 1007, 23–41). Petitioner contends that FIPA97 further discloses that each trigger may have "conditional functionality and consequential functionality"—e.g., the performative "request-whenever" shows a condition ("whenever the price of widgets rises from less than 50 to more than 50") triggering a consequence (agent i notifies agent i). *Id.* at 64 (citing Ex. 1007, 41). Citing the testimony of Dr. Lieberman, Petitioner argues that when the price of widgets changes the agent makes a "determination" that a specific action should or should not occur, in this case depending on whether the price has risen above 50, and, if the price is greater than 50, the agent takes a consequential action based off that determination and notifies Agent-I about the price change. *Id.* (citing Ex. 1003 ¶ 416).

Patent Owner does not respond separately to Petitioner's challenge to dependent claim 15 beyond Patent Owner's arguments advanced with respect to claim 1 discussed above. *See* PO Resp. 108–114.

Based on the complete record and for the reasons explained by Petitioner, we determine that Petitioner has demonstrated by a preponderance of the evidence that claim 15 is unpatentable under 35 U.S.C. § 103(a) over the combination of Kiss and FIPA97.³⁶

³⁶ We also find that Patent Owner has waived any argument directed to claim 15 aside from contesting the unpatentability of claim 1, from which

7. Independent Claim 29

Claims 1 and 29 are the only independent claims among the challenged claims. Although many of the limitations recited in claims 1 and 29 are similar, there exist material differences in the claim language of these claims. For example, claim 1 recites

- constructing a goal satisfaction plan wherein the goal satisfaction plan includes:
- a suitable delegation of sub-goal requests to best complete the requested service request—by using reasoning that includes one or more of domain-independent coordination strategies, domain-specific reasoning, and application-specific reasoning comprising rules and learning algorithms; and
- dispatching each of the sub-goals to a selected client agent for performance, based on a match between the sub-goal being dispatched and the registered functional capabilities of the selected client agent,

whereas claim 29 recites

constructing a base goal satisfaction plan including the sub-acts of:

determining whether the request service is available,

determining sub-goals required in completing the base goal by using reasoning that includes one or more of domainindependent coordination strategies, domain-specific reasoning, and application-specific reasoning comprising rules and learning algorithms,

selecting service-providing electronic agents from the agent registry suitable for performing the determined sub-goals, and,

claim 15 depends, over the combination of Kiss and FIPA97. *See* Paper 16, 7.

ordering a delegation of sub-goal requests complete the requested service.

Ex. 1001, 29:32–43 (claim 1), 32:9–22 (claim 29). As apparent in the claim language reproduced above, there exist material differences between these limitations on the face of the claims.

When addressing the "constructing a base goal satisfaction plan" limitation and its elements recited in claim 29, however, Petitioner's analysis consists of a single sentence pointing to its analysis for similar but materially different limitations from claim 1. *See* Pet. 69 ("Kiss/FIPA97 satisfies this claim for the reasons stated in §§VI.A.1.h."). Petitioner does not address the claim language of claim 29 or explain why its analysis for claim 1 is sufficient to demonstrate that the combination of Kiss and FIPA97 teaches the limitations of claim 29. Accordingly, in the Institution Decision, we determined that the information presented in the Petition did not demonstrate a reasonable likelihood of Petitioner prevailing in its challenge to claim 29 under 35 U.S.C. § 103(a) as obvious over the combination of Kiss and FIPA97. Inst. Dec. 79–80.

In the Petitioner Reply, Petitioner contends that "there are no 'material differences' between claim 1 and claim 29" and, therefore, "the evidence relied on in the Petition discloses each and every limitation of Claim 29." Pet. Reply 67. Asserting that "Patent Owner does not argue that there are ['material differences' between claim 1 and claim 29]," Petitioner goes on to present comparisons of the claim language of claim 1 and claim 29 and argues the combination of Kiss and FIPA97 teaches the limitations of claim 29. *Id.* at 67–74.

Patent Owner disputes Petitioner's contention in the Reply and asserts that Petitioner's arguments relating to claim 29 are new arguments presented for the first time in the Reply, and, therefore, should not be considered. PO Sur-reply 54–58.³⁷

We agree with Patent Owner. Petitioner does not explain why its arguments relating to claim 29 in the Reply could not be presented in the first instance in the Petition or how the arguments in the Reply are responsive to Patent Owner's arguments in the Patent Owner Response. Indeed, the claim 29 section in the Petitioner Reply does not cite to the Patent Owner Response at all. *See* Pet. Reply 66–74.

Further, we are not persuaded by Petitioner's argument that "there are no 'material differences' between claim 1 and claim 29." Pet. Reply 67. Whether the claim language of a recitation in a claim is material to the patentability of the claim raises an issue of claim construction. See Allergan Sales, LLC v. Sandoz, Inc., 935 F.3d 1370, 1373–76 (Fed. Cir. 2019) (discussing claim construction of a "wherein" clause to determine

_

³⁷ Patent Owner also argues that, because Petitioner makes these arguments for the first time in the Reply, Patent Owner was unable to depose Petitioner's expert regarding Patent Owner's assertions and Patent Owner's expert did not have the ability to respond to them. PO Sur-reply 57.

³⁸ We note that it was Petitioner's affirmative duty to explain in the Petition how the challenged claims should be construed and how, as so construed, they are unpatentable. *See* 37 C.F.R. § 42.104(b)(3)–(4). Thus, had Petitioner intended to argue claim construction of claims 1 and 29 such that "there are no 'material differences' between claim 1 and claim 29," such an analysis should have been set forth explicitly in the Petition. As discussed below, even if we were to consider Petitioner's claim construction argument presented belatedly in the Reply, we are not persuaded that "there are no 'material differences' between claim 1 and claim 29," as Petitioner contends.

whether the "wherein" clause is material to patentability); see also SimpleAir, Inc. v. Sony Ericsson Mobile Commc'ns AB, 820 F.3d 419, 429 (Fed. Cir. 2016) ("A claim construction that gives meaning to all the terms of the claim is preferred over one that does not do so" (quoting Merck & Co. v. Teva Pharm. USA, Inc., 395 F.3d 1364, 1372 (Fed. Cir. 2005)); "The preference for giving meaning to all terms, however, is not an inflexible rule that supersedes all other principles of claim construction" (citing *Power* Mosfet Techs., L.L.C. v. Siemens AG, 378 F.3d 1396, 1410 (Fed. Cir. 2004)). Petitioner, however, does not present sufficient claim construction analysis to show why "there are no 'material differences' between claim 1 and claim 29." For example, Petitioner equates "determining whether the request service is available" recited in claim 29 to "a suitable delegation" recited in claim 1. Pet. Reply 69 ("determining whether the request service is available," (i.e, "a suitable delegation,")). Petitioner also equates "determining sub-goals required in completing the base goal" recited in claim 29 to "to best complete the requested service request" recited in claim 1. Id. ("determining sub-goals required in completing the base goal," (i.e., "to best complete the requested service request.")). But Petitioner does not discuss claim construction of these limitations or explain why the differences in the claim language on the face of these limitations are not material to the patentability of the claims 1 and 29. See id. at 69–71.

Instead, Petitioner in the Reply discusses how Kiss teaches the limitations recited in claim 29. *See id.* Thus, rather than persuasively explaining why "there are no 'material differences' between claim 1 and

claim 29," the Reply presents arguments and evidence on how Kiss teaches the limitations recited in claim 29.

Such arguments and evidence are the type of material that should have been included in the Petition in the first instance to present a *prima facie* case of unpatentability, and, therefore, are improperly introduced for the first time in the Petitioner Reply. See Patent Trial and Appeal Board Consolidated Trial Practice Guide 73–75 (Nov. 2019) ("Consolidated Trial Practice Guide"), available at https://www.uspto.gov/ TrialPracticeGuideConsolidated (discussing the appropriate scope for a reply); id. at 73 ("Petitioner may not submit new evidence or argument in reply that it could have presented earlier, e.g. to make out a prima facie case of unpatentability."). It was Petitioner's burden to demonstrate sufficiently in the Petition that the cited prior art renders the challenged claims unpatentable, including showing that the Petition's contentions are supported by evidence. See 35 U.S.C. § 314(a); see also Harmonic Inc. v. Avid Tech., Inc., 815 F.3d 1356, 1363 (Fed. Cir. 2016) ("In an IPR, the petitioner has the burden from the onset to show with particularity why the patent it challenges is unpatentable." (emphases added)) (citing 35 U.S.C. § 312(a)(3)); Intelligent Bio-Systems, 821 F.3d at 1369 (requiring "the initial petition" identify 'with particularity' the 'evidence that supports the grounds for the challenge to each claim." (emphases added)). Based on the complete record, we determine that the Petition did not meet this burden required on Petitioner with respect to claim 29. Thus, under the particular facts and circumstances in this case, we decline to consider Petitioner's arguments and evidence relating to claim 29 presented belatedly in the Petitioner Reply.

Accordingly, based on the complete record, we determine that Petitioner does not demonstrate by a preponderance of evidence that claim 29 is unpatentable under 35 U.S.C. § 103(a) over the combination of Kiss and FIPA97.

8. Dependent Claims 30–32 and 38

Claims 30–32 and 38 depend directly or indirectly from claim 29. Petitioner's arguments and evidence presented with respect to dependent claims 30–32 and 38 only address the additionally recited limitations of these claims, and, therefore, do not remedy the deficiencies in Petitioner's analysis of independent claim 29 discussed above. *See* Pet. 69–75.

Therefore, for the same reasons discussed above with respect to claim 29, Petitioner does not demonstrate by a preponderance of evidence that claims 30–32 and 38 are unpatentable under 35 U.S.C. § 103(a) over the combination of Kiss and FIPA97.

I. Claims 7, 16, and 39 as Obvious over Kiss, FIPA97, and Cheyer Claims 7, 16, and 39 depend directly or indirectly from claims 1 or 29. Petitioner adds the teachings of Cheyer (Ex. 1015) to the basic combination of Kiss and FIPA97 in an asserted ground of obviousness as to these dependent claims. Pet. 75–79.

1. Cheyer (Ex. 1015)

Cheyer describes an implementation of SRI International's Open Agent Architecture (OAA), which is mentioned in the '115 patent as a starting point for the subject matter described in the patent. Ex. 1015, 55³⁹ (Abstract); Ex. 1001, 4:44–55. Cheyer describes a system called MVIEWS (Multimodal Video Imagery Exploitation WorkStation) which uses a distributed multiagent framework that enables rapid integration of component technologies, such as pen and voice recognition and interpretation, image processing and object tracking, geo-referenced interactive maps, multimedia databases, and human collaborative tools. Ex. 1015, 55. The implementation disclosed in Cheyer is designed to support "[m]ilitary and intelligence analysts," by "annotating, indexing, extracting, and disseminating information from video streams for surveillance and intelligence applications." *Id*.

Cheyer uses the Interagent Communication Language (ICL), which provides the means for interaction among agents. *Id.* at 58. Cheyer describes that agents declare descriptions of data they manage. *Id.*According to Cheyer, data declarations and functions also make use of the notion of parameter lists, where parameters specify information about permissions, scoping, persistence, whether duplicate values are allowed, and so forth. *Id.* at 59. Cheyer also describes "triggers," which allow an agent, or set of agents, to monitor some potentially complex state in the world, performing an action if the trigger's test conditions become true. *Id.*

Petitioner asserts that Cheyer was published in 1998 in conjunction with the 1998 International Conference on Intelligent User Interfaces ("IUI98") that took place on January 6–9, 1998. Pet. 27 (citing Ex. 1015, ii

³⁹ The page numbers for Exhibit 1036 refer to the page numbers inserted by Petitioner in the bottom, right-hand corner of each page.

(evidencing receipt by libraries on March 17, 1998)). Petitioner contends that Cheyer, therefore, is prior art to the '115 patent under 35 U.S.C. § 102(a). *Id*.

Patent Owner does not contest the applicability of Cheyer as prior art in this proceeding. *See generally* PO Resp.

We note that Cheyer was published by Association for Computing Machinery (ACM) and bears the Copyright date of 1998 from ACM. Ex. 1015, ii. Like IEEE publications, ACM publications, such as the one in which Cheyer appeared, are distributed widely and intended to be accessible to the public. The wide distribution of publications from IEEE and ACM distinguishes them from academic papers such as masters and doctoral theses, which in some cases may not be well catalogued or indexed. The Board has accepted the copyright date of an IEEE publication as evidence of its public availability. *Ericsson, Inc. v. Intellectual Ventures I LLC*, Case IPR2014-00527, Paper 41 at 10 (PTAB May 18, 2015). In view of the reliability of ACM publications and their wide distribution, as well as the evidence provided by Petitioner that the publication containing the Cheyer article was provided to libraries for circulation to the public, in the Institution Decision, we found that Petitioner demonstrated sufficiently that Cheyer qualifies as applicable prior art. Inst. Dec. 81–82.

During the trial, the parties did not dispute Cheyer qualifies as prior art in this case. Based on the complete record, we determine that Petitioner has established by a preponderance of the evidence that Cheyer is a prior art printed publication to the '115 patent under 35 U.S.C. § 102(a).

2. Motivation to Combine

Petitioner asserts that it would have been obvious to use Cheyer's data declarations in the combined Kiss/FIPA97 system because to do so would have been simply the arrangement of old elements (the Kiss system, the FIPA ACL and the Cheyer data declarations) with each performing the same function it had been known to perform and yielding no more than what one would expect from such an arrangement (i.e., the declaration of data characteristics in a distributed agent system using an inter-agent communication language. Pet. 76 (citing Ex. 1003¶ 368). Petitioner further argues that a Skilled Artisan would have been motivated to use the techniques of Cheyer to provide more information as to the type or characteristics of data a particular agent would be able to handle because such additional specific information would permit the meta-agent, or facilitator, to more readily identify an client agent who could best satisfy a sub-goal. *Id.* (citing Ex. 1003¶ 369).

Patent Owner does not dispute Petitioner's articulation of the reasons to combine Kiss, FIPA97, and Cheyer. *See generally* PO Resp.

Based on the complete record, we determine Petitioner has provided sufficient reasons why a person of ordinary skill in the art would have combined Kiss, FIPA97, and Cheyer.

3. Claim 7

Claim 7 depends from claim 5 and further recites "wherein the agent registry data structure includes at least one data declaration for each active agent." Ex. 1001, 30:7–9. As discussed above in Section III.H.4., Petitioner

has shown by a preponderance of the evidence that the subject matter of claim 5 would have been obvious over the combination of Kiss and FIPA97. Petitioner contends that the subject matter of claim 7 would have been obvious over the combination of Kiss, FIPA97, and Cheyer. Pet. 75–76.

Petitioner asserts that Cheyer discloses use of data declarations in its agent registry. *Id.* at 76 (citing Ex. 1015, 58). Citing the testimony of Dr. Lieberman, Petitioner contends that it would have been obvious to use Cheyer's data declarations in the combined Kiss/FIPA97 system because to do so would have been simply the arrangement of old elements (the Kiss system, the FIPA ACL and the Cheyer data declarations) with each performing the same function it had been known to perform and yielding no more than what one would expect from such an arrangement (i.e., the declaration of data characteristics in a distributed agent system using an inter-agent communication language). *Id.* (citing Ex. 1003 ¶ 368). Petitioner further argues that a person of ordinary skill in the art would have been motivated to use the techniques of Cheyer to provide more information as to the type or characteristics of data a particular agent would be able to handle. *Id.* (citing Ex. 1003 ¶ 368). Petitioner asserts that such additional specific information would permit the meta-agent, or facilitator, to more readily identify a client agent who could best satisfy a sub-goal. *Id.* (citing Ex. 1003 ¶ 368).

Patent Owner does not respond separately to Petitioner's challenge to dependent claim 7 beyond Patent Owner's arguments advanced with respect to claims 1 and 5 discussed above. *See* PO Resp. 108–114.

Based on the complete record and for the reasons explained by Petitioner, we determine that Petitioner has demonstrated by a preponderance of the evidence that claim 7 is unpatentable under 35 U.S.C. § 103(a) over the combination of Kiss, FIPA97, and Cheyer.⁴⁰

4. Claim 16

Claim 16, which depends from claim 15, recites as follows:

16. A compute-implemented method as recited in claim 15 wherein the trigger is an outgoing communications trigger, the computer implemented method further including the acts of:

monitoring all outgoing communication events in order to determine whether a specific outgoing communication event has occurred; and

in response to the occurrence of the specific outgoing communication event, performing the particular action defined by the trigger.

Ex. 1001, 30:46–49.

a. "outgoing communications trigger"

Petitioner asserts that Cheyer teaches "an outgoing communications trigger" in the form of a trigger that fires "[i]f any agent sends" a message. Pet. 77 (citing Ex. 1015, 59). According to Petitioner, triggers in Cheyer "monitor some potentially complex state in the world, performing an action if the trigger's test conditions become true." *Id.* (citing Ex. 1015, 59). Petitioner further asserts that Cheyer discloses four types of triggers; data, time, communication, and task triggers. *Id.* (citing Ex. 1015, 59). Petitioner

⁴⁰ We also find that Patent Owner has waived any argument directed to claim 7 aside from contesting the unpatentability of claims 1 and 5 over the combination of Kiss and FIPA97. *See* Paper 16, 7.

argues that the "communication trigger" in Cheyer can therefore be set to fire "if any agent sends" a message—that is, the precondition of the trigger is defined in terms of an agent sending a message (i.e., a communications trigger). *Id.* (citing Ex. 1015, 59). Petitioner asserts that, therefore, Cheyer teaches an "outgoing communications trigger" recited in claim 16. *Id.* at 78.

Patent Owner does not specifically dispute that Cheyer teaches this "outgoing communications trigger" limitation. *See generally* PO Resp. Based on the complete record and for the reasons explained by Petitioner, we are persuaded that Petitioner has demonstrated sufficiently that Cheyer teaches "an outgoing communications trigger" recited in claim 16.⁴¹

b. "monitoring all outgoing communication events in order to determine whether a specific outgoing communication event has occurred"

Addressing the next limitation of claim 16, Petitioner asserts that Cheyer discloses that the triggers in OAA "monitor some potentially complex state in the world, performing an action if the trigger's test conditions become true." Pet. 78 (citing Ex. 1015, 59). Petitioner argues that because Cheyer's trigger can be set so that it fires when "any agent sends" a message (*id.* (citing Ex. 1015, 59)), the trigger will "monitor" the system to determine "if **any agent sends**" a message ("all outgoing communication events") that matches the "trigger's test conditions" ("to determine whether a specific outgoing communication event has occurred") (*id.* (citing Ex. 1015, 59)).

⁴¹ We also find that Patent Owner has waived any argument directed to this claim limitation. *See* Paper 16, 7.

Patent Owner does not specifically dispute that Cheyer teaches this "monitoring all outgoing communication events" limitation. *See generally* PO Resp. Based on the complete record and for the reasons explained by Petitioner, we are persuaded that Petitioner has demonstrated sufficiently that Cheyer teaches "monitoring all outgoing communication events in order to determine whether a specific outgoing communication event has occurred," as recited in claim 16.⁴²

c. "in response to the occurrence of the specific outgoing communication event, performing the particular action defined by the trigger"

Petitioner asserts that Cheyer discloses that triggers "monitor some potentially complex state in the world, performing an action if the trigger's test conditions become true." Pet. 78 (citing Ex. 1015, 59). Petitioner further contends that the trigger in OAA may define "the action part of a trigger" and it "may be any compound task executable by the dynamic community of agents." *Id.* (citing Ex. 1015, 59). According to Petitioner, Cheyer describes "[f]or instance, . . . the user can now say or write 'If email arrives ..., fax it to Bill." *Id.* at 78–79 (citing Ex. 1015, 59). Petitioner argues that in Cheyer, both the precondition (i.e., "If email arrives . . . ,") and the action (i.e., "fax it to Bill") are defined inside of the trigger definition. *Id.* at 79 (citing Ex. 1015, 59).

Petitioner asserts that Cheyer, therefore, discloses a trigger that performs "an action if the trigger's test conditions become true" ("in

⁴² We also find that Patent Owner has waived any argument directed to this claim limitation. *See* Paper 16, 7.

response to the occurrence of the specific outgoing communication event performing the particular action"), and where the trigger's "action [is] defined by the trigger" (i.e., "fax it to Bill"). *Id.* (citing Ex. 1003 ¶ 424).

Patent Owner does not specifically dispute that Cheyer teaches this "performing the particular action defined by the trigger" limitation. *See generally* PO Resp. Based on the complete record and for the reasons explained by Petitioner, we are persuaded that Petitioner has demonstrated sufficiently that Cheyer teaches "in response to the occurrence of the specific outgoing communication event, performing the particular action defined by the trigger," as recited in claim 16.⁴³

d. Conclusion

Based on the complete record and for the reasons explained by Petitioner, we determine that Petitioner has demonstrated by a preponderance of the evidence that claim 16 is unpatentable under 35 U.S.C. § 103(a) over the combination of Kiss, FIPA97, and Cheyer.

5. Claim 39

Claim 39 depends indirectly from claim 29. Petitioner's arguments and evidence presented with respect to dependent claim 39 only address the additionally recited limitation of the claim, and, therefore, do not remedy the deficiencies in Petitioner's analysis of independent claim 29 discussed above. *See* Pet. 76–79.

⁴³ We also find that Patent Owner has waived any argument directed to this claim limitation. *See* Paper 16, 7.

Therefore, for the same reasons discussed above with respect to claim 29, Petitioner does not demonstrate by a preponderance of evidence that claim 39 is unpatentable under 35 U.S.C. § 103(a) over the combination of Kiss, FIPA97, and Cheyer.

J. Patent Owner's Motion to Exclude

Patent Owner filed a Motion to Exclude (Paper 35) "a portion of Exhibit 1129, as well as related testimony relied on by [Petitioner]." Paper 35, 1. Exhibit 1129 is the deposition transcript of Patent Owner's declarant Dr. Medvidovic, taken on May 19, 2020. In particular, Patent Owner seeks to exclude lines 53:19–54:21 of Exhibit 1129, which contain certain deposition testimony of Dr. Medvidovic regarding the "facilitator" of the '115 patent. We, however, do not rely on lines 53:19–54:21 of Exhibit 1129 or related testimony of Dr. Medvidovic for this Final Written Decision because whether the prior art teaches the claimed "facilitator agent" is not at issue for this Decision. Accordingly, we dismiss Patent Owner's Motion to Exclude as moot.

K. Patent Owner's Constitutional Challenges

Patent Owner raises two constitutional challenges. First, Patent Owner argues that subjecting a pre-AIA patent, such as the '115 patent, retroactively to *inter partes* review violates the Takings and Due Process Clauses of the Fifth Amendment. PO Resp. 146. Second, Patent Owner asserts that *inter partes* reviews violate the Appointments Clause of the U.S. Constitution when conducted by administrative patent judges not nominated by the President and confirmed by the Senate. *Id*.

Addressing first Patent Owner's Appointments Clause challenge, we are bound by the Federal Circuit's decision in *Arthrex, Inc. v. Smith & Nephew, Inc.*, 941 F.3d 1320 (Fed. Cir. 2019) (*cert. granted sub nom. United States v. Arthrex, Inc.*, 2020 WL 6037206 (Oct. 13, 2020)), which addressed this issue. *See* 941 F.3d at 1337 ("This as-applied severance . . . cures the constitutional violation."); *see also Arthrex, Inc. v. Smith & Nephew, Inc.*, 953 F.3d 760, 764 (Fed. Cir. 2020) (Moore, J., concurring in denial of rehearing) ("Because the APJs were constitutionally appointed as of the implementation of the severance, *inter partes* review decisions going forward were no longer rendered by unconstitutional panels.").

Accordingly, we do not consider this issue any further.

With regard to the Takings and Due Process Clause challenge, we note that challenges to retroactive application of IPRs to pre-AIA patents have been addressed by the Federal Circuit in *Celgene Corp. v. Peter*, 931 F.3d 1342, 1357–1363 (Fed. Cir. 2019), *cert. denied* 2020 WL 3405867 (June 22, 2020) (Takings Clause) and *Sound View Innovations, LLC v. Hulu, LLC*, Nos. 2019-1865, 2019-1867, 2020 WL 3583556, *3 (Fed. Cir. July 2, 2020) (non-precedential) (Due Process Clause). Accordingly, we do not consider this issue any further.

IV. CONCLUSION

For the foregoing reasons, we conclude that Petitioner has met its burden of proof, by a preponderance of the evidence, in showing that claims 1, 4–7, 15, and 16 of the '115 patent are unpatentable. For the reasons discussed above, Petitioner has not demonstrated, by a preponderance of the

evidence, claims 8–10, 29–32, 38, and 39 of the '115 patent are unpatentable. The chart below summarizes our conclusions.

Claims	35 U.S.C. §	References/ Basis	Claim(s) Shown Unpatentable	Claim(s) Not Shown Unpatentable
1, 4–10, 15, 29– 32, 38	103(a)	Kiss and FIPA97	1, 4–7, 15	8–10, 29–32, 38
7, 16, 39	103(a)	Kiss, FIPA97, and Cheyer	7, 16	39
Overall Outcome			1, 4–7, 15, 16	8–10, 29–32, 38, 39

V. ORDER

In consideration of the foregoing, it is hereby:

ORDERED that claims 1, 4–7, 15, and 16 of the '115 patent are determined to be unpatentable;

FURTHER ORDERED that claims 8–10, 29–32, 38, and 39 of the '115 patent are not determined to be unpatentable;

FURTHER ORDERED that Patent Owner's Motion to Exclude is dismissed as moot; and

FURTHER ORDERED that, because this is a Final Written Decision, a party to the proceeding seeking judicial review of the Decision must comply with the notice and service requirements of 37 C.F.R. § 90.2.

IPR2019-00810 Patent 6,851,115 B1

PETITIONER:

Joseph Micallef Scott Border <u>jmicallef@sidley.com</u> sborder@sidley.com

PATENT OWNER:

Steven Hartsell Alexander Gasser Sarah Spires shartsell@skiermontderby.com agasser@skiermontderby.com sspires@skiermontderby.com